MATH 116 - Spring 2005

Practice Problems for Exam 1

Problem 1. Circle the correct answer.
(I) $\ln \left(\ln \left(e^{x}\right)\right)$ is equal to
(A) $\ln x$
(B) e^{x}
(C) $\ln e$
(D) e
(E) None of the above.
(II) $\sqrt{9 e^{6 x}}$ is equal to
(B) $3+e^{3 x}$
(C) $3 e^{3 x}$
(D) $3(\sqrt{e})^{6 x}$
(E) None of the above.
(III) $\ln \left(\frac{x}{4}\right)+\ln 4$ is equal to
(A) $\ln \left(\frac{x}{4}+4\right)$
(B) $\ln x$
(C) $4 \ln x$
(D) $\ln \left(\frac{x}{4}\right) \ln 4$
(E) None of the above.
(IV) The inverse of the function $f(x)=\ln (x)$ is
(A) $g(x)=(\ln x)^{-1}$
(B) $g(x)=e^{x}(C) g(x)=e^{-x}$
(D) $g(x)=\ln \left(\frac{1}{x}\right)$
(E) None of the above.

Problem 2. Find the derivative of the following functions
(A) $f(x)=\ln \left(x^{3}+1\right)$.
(B) $f(x)=e^{x^{2}-\sqrt{x}}$.
(C) $f(x)=e^{x} \ln \left(e^{x}+1\right)$.
(D) $f(x)=\cos \left(\mathrm{e}^{x}\right)$.
(E) $f(x)=\ln \left(\sin \left(x^{2}\right)\right)$.
(F) $f(x)=\sin (\sin (\sqrt{x})$).

Problem 3. Find the maximum and minimum values of the following function on the given intervals. Justify your work.
(A) $f(x)=2+\sin (x), \quad x \in[0,2 \pi]$.
(B) $f(x)=\sqrt{\sin x+2}, \quad x \in[0,2 \pi]$.
(C) $f(x)=x-\sin (x), \quad x \in[\pi / 2,3 \pi / 2]$.
(D) $f(x)=6\left(1-\sin \frac{\pi x}{2}\right) \quad x \in[1 / 2,5 / 4]$.

Problem 4.
Find the coordinates of all relative extrema and inflection points of $f(x)=\frac{x^{2}}{e^{x}}$.
Problem 5. Compute the following integrals. Check your answers.
(A) $\int 2 \sin (2 x) d x$.
(B) $\int x\left(x^{2}+2 x \pi\right) d x$.
(C) $\int e^{4 x} d x$.
(D) $\int\left(3 x^{3 / 2}+\frac{1}{x}\right) d x$.
(E) $\int\left(4 x-12 x^{3}\right)\left(2 x^{2}-3 x^{4}\right)^{17} d x$.

Problem 6. An architect wishes to design a ramp inclined 30° leading from the ground level to a secondstory door in a parking garage. How far from the building must the ramp start if the garage is 12 feet above the ground level?
Problem 7. A patient's temperature is 108 degrees and is changing at the rate of $t^{2}-4 t$ degrees per hour, where t is the number of hours since taking fever-reducing medication. Find the patient's temperature after 2 hours.

Brief Solutions

(you may have to show more work in the exam)

Problem 1.

$\begin{array}{lll}\text { (I) } \ln \left(\ln \left(e^{x}\right)\right)=\ln x & \text { (II) } \sqrt{9 e^{6 x}}=3 e^{3 x}, & \text { (III) } \ln \left(\frac{x}{4}\right)+\ln 4=\ln x,\end{array} \quad$ (IV) The inverse of the function $f(x)=\ln (x)$ is $g(x)=e^{x}$.

Problem 2.

(A) $f^{\prime}(x)=\frac{3 x^{2}}{x^{3}+1}$.
(B) $f^{\prime}(x)=e^{x^{2}-\sqrt{x}}\left(2 x-\frac{1}{2 \sqrt{x}}\right)$.
(C) $f^{\prime}(x)=e^{x} \ln \left(e^{x}+1\right)+\frac{e^{2 x}}{e^{x}+1}$.
(D) $f^{\prime}(x)=-\sin \left(e^{x}\right) e^{x}$.
(E) $f^{\prime}(x)=\frac{1}{\sin \left(x^{2}\right)} \cos \left(x^{2}\right) 2 x=2 x \cot \left(x^{2}\right)$.
(F) $f^{\prime}(x)=\cos (\sin (\sqrt{x})) \cos (\sqrt{x}) \frac{1}{2 \sqrt{x}}$.

Problem 3.

(A) $f(3 \pi / 2)=1$ and $f(\pi / 2)=3(f$ is $\sin x$ shifted two units up).
(B) $f^{\prime}(x)=\frac{\cos x}{2 \sqrt{\sin x+2}}, f^{\prime}(x)=0$ for $x=\pi / 2$ or $x=3 \pi / 2$. $\operatorname{Max}=f(\pi / 2)=\sqrt{3}, \operatorname{Min}=f(3 \pi / 2)=1$.
(C) $f^{\prime}(x)=1-\cos x, f^{\prime}(x) \neq 0$ on $[\pi / 2,3 \pi / 2]$, $\operatorname{Max}=f(3 \pi / 2)=3 \pi / 2+1$, $\operatorname{Min}=f(\pi / 2)=\pi / 2-1$
(D) $\sin (x \pi / 2)$ is positive on $[1 / 2,5 / 4]$ and $\sin (x \pi / 2)=1$ there for $x=1$. Max $=f(1 / 2)=6\left(1-\frac{\sqrt{2}}{2}\right)$, $\operatorname{Min}=f(1)=0$.

Problem 4.

$f^{\prime}(x)=2 x e^{-x}-x^{2} e^{-x}=e^{-x}\left(2 x-x^{2}\right)$
$f^{\prime \prime}(x)=-e^{-x}\left(2 x-x^{2}\right)+e^{-x}(2-2 x)=e^{-x}\left(x^{2}-4 x+2\right)$
$f^{\prime}(x)=0 \leftrightarrow e^{-x}\left(2 x-x^{2}\right)=0 \leftrightarrow\left(2 x-x^{2}\right)=0 \leftrightarrow x=0$ or $x=2$.
$f^{\prime \prime}(0)=2>0$, then $(0,0)$ is a local minimum.
$f^{\prime \prime}(2)=-2 e^{-2}<0$, then $\left(2,4 e^{-2}\right)$ is a local maximum.
$f^{\prime \prime}(x)=0 \leftrightarrow \quad e^{-x}\left(x^{2}-4 x+2\right)=0 \leftrightarrow \quad\left(x^{2}-4 x+2\right)=0 \leftrightarrow x=2 \pm \sqrt{2}$
$f^{\prime \prime}(0)>0$ and $f^{\prime \prime}(2)<0$, then $(2-\sqrt{2}, f(2-\sqrt{2}))$ is an inflection point.
$f^{\prime \prime}(2)<0$ and $f^{\prime \prime}(4)>0$, then $(2+\sqrt{2}, f(2+\sqrt{2}))$ is an inflection point.

Problem 5.

(A) $-\cos 2 x+C$.
(B) $1 / 4 x^{4}+2 / 3 x^{3} \pi+C$.
(C) $\frac{1}{4} e^{4 x}+C$.
(D) $(6 / 5) x^{5 / 2}+\ln |x|+C$.
(E) $(1 / 18)\left(2 x^{2}-3 x^{4}\right)^{18}+C$

Problem 6.

$30^{0}=\pi / 6,1 / \sqrt{3}=\tan (\pi / 6)=12 / x$ and hence $x=12 \sqrt{3}$ feet.

Problem 7.

$T(t)=1 / 3 t^{3}-2 t^{2}+C$.
$T(0)=108$ so $C=108, T(2)=1 / 32^{3}-22^{2}+108=102.67$ degrees.

