MATH 116 – Spring 2005 Practice Problems for Exam 1

Problem 1. Circle the correct answer.

(I) $\ln(\ln(e^x))$ is equal to (A) $\ln x$ (B) e^x (C) $\ln e$ (D) e (E) None of the above. (II) $\sqrt{9e^{6x}}$ is equal to (A) $3e^{\sqrt{6x}}$ (B) $3 + e^{3x}$ (C) $3e^{3x}$ (D) $3(\sqrt{e})^{6x}$ (E) None of the above. (III) $\ln(\frac{x}{4}) + \ln 4$ is equal to (A) $\ln(\frac{x}{4} + 4)$ (B) $\ln x$ (C) $4\ln x$ (D) $\ln(\frac{x}{4})\ln 4$ (E) None of the above. (IV) The inverse of the function $f(x) = \ln(x)$ is (A) $g(x) = (\ln x)^{-1}$ (B) $g(x) = e^x(C) g(x) = e^{-x}$ (D) $g(x) = \ln(\frac{1}{x})$ (E) None of the above.

Problem 2. Find the derivative of the following functions (A) $f(x) = \ln(x^3 + 1)$.

(A) $f(x) = \ln(x + 1)$. (B) $f(x) = e^{x^2 - \sqrt{x}}$. (C) $f(x) = e^x \ln(e^x + 1)$. (D) $f(x) = \cos(e^x)$. (E) $f(x) = \ln(\sin(x^2))$. (F) $f(x) = \sin(\sin(\sqrt{x}))$.

Problem 3. Find the maximum and minimum values of the following function on the given intervals. Justify your work.

(A) $f(x) = 2 + \sin(x), \quad x \in [0, 2\pi].$ (B) $f(x) = \sqrt{\sin x + 2}, \quad x \in [0, 2\pi].$ (C) $f(x) = x - \sin(x), \quad x \in [\pi/2, 3\pi/2].$ (D) $f(x) = 6(1 - \sin \frac{\pi x}{2}) \quad x \in [1/2, 5/4].$

Problem 4.

Find the coordinates of all relative extrema and inflection points of $f(x) = \frac{x^2}{e^x}$.

Problem 5. Compute the following integrals. Check your answers.

(A)
$$\int 2\sin(2x) dx$$
.
(B) $\int x(x^2 + 2x\pi) dx$.
(C) $\int e^{4x} dx$.
(D) $\int (3x^{3/2} + \frac{1}{x}) dx$.
(E) $\int (4x - 12x^3)(2x^2 - 3x^4)^{17} dx$

Problem 6. An architect wishes to design a ramp inclined 30^0 leading from the ground level to a secondstory door in a parking garage. How far from the building must the ramp start if the garage is 12 feet above the ground level?

Problem 7. A patient's temperature is 108 degrees and is changing at the rate of $t^2 - 4t$ degrees per hour, where t is the number of hours since taking fever-reducing medication. Find the patient's temperature after 2 hours.

Brief Solutions

(you may have to show more work in the exam)

Problem 1.

(I) $\ln(\ln(e^x)) = \ln x$ (II) $\sqrt{9e^{6x}} = 3e^{3x}$, (III) $\ln(\frac{x}{4}) + \ln 4 = \ln x$, (IV) The inverse of the function $f(x) = \ln(x)$ is $g(x) = e^x$.

Problem 2.

(A)
$$f'(x) = \frac{3x^2}{x^3 + 1}$$
.
(B) $f'(x) = e^{x^2 - \sqrt{x}} (2x - \frac{1}{2\sqrt{x}})$.
(C) $f'(x) = e^x \ln(e^x + 1) + \frac{e^{2x}}{e^x + 1}$.
(D) $f'(x) = -\sin(e^x) e^x$.
(E) $f'(x) = \frac{1}{\sin(x^2)} \cos(x^2) 2x = 2x \cot(x^2)$.
(F) $f'(x) = \cos(\sin(\sqrt{x})) \cos(\sqrt{x}) \frac{1}{2\sqrt{x}}$.

Problem 3.

(A) $f(3\pi/2) = 1$ and $f(\pi/2) = 3$ (*f* is sin *x* shifted two units up). (B) $f'(x) = \frac{\cos x}{2\sqrt{\sin x + 2}}$, f'(x) = 0 for $x = \pi/2$ or $x = 3\pi/2$. Max= $f(\pi/2) = \sqrt{3}$, Min= $f(3\pi/2)=1$. (C) $f'(x) = 1 - \cos x$, $f'(x) \neq 0$ on $[\pi/2, 3\pi/2]$, Max= $f(3\pi/2) = 3\pi/2 + 1$, Min= $f(\pi/2) = \pi/2 - 1$ (D) $\sin(x\pi/2)$ is positive on [1/2, 5/4] and $\sin(x\pi/2) = 1$ there for x = 1. Max = $f(1/2) = 6(1 - \frac{\sqrt{2}}{2})$, Min = f(1) = 0.

Problem 4.

 $\begin{array}{l} f'(x) = 2xe^{-x} - x^2e^{-x} = e^{-x}(2x - x^2) \\ f''(x) = -e^{-x}(2x - x^2) + e^{-x}(2 - 2x) = e^{-x}(x^2 - 4x + 2) \\ f'(x) = 0 \quad \leftrightarrow \quad e^{-x}(2x - x^2) = 0 \quad \leftrightarrow (2x - x^2) = 0 \quad \leftrightarrow x = 0 \ \text{ or } x = 2. \\ f''(0) = 2 > 0, \ \text{then } (0,0) \ \text{is a local minimum.} \\ f''(2) = -2e^{-2} < 0, \ \text{then } (2, 4e^{-2}) \ \text{is a local maximum.} \\ f''(x) = 0 \leftrightarrow \quad e^{-x}(x^2 - 4x + 2) = 0 \leftrightarrow \quad (x^2 - 4x + 2) = 0 \leftrightarrow x = 2 \pm \sqrt{2} \\ f''(0) > 0 \ \text{and} \ f''(2) < 0, \ \text{then } (2 - \sqrt{2}, f(2 - \sqrt{2})) \ \text{is an inflection point.} \\ f''(2) < 0 \ \text{and} \ f''(4) > 0, \ \text{then } (2 + \sqrt{2}, f(2 + \sqrt{2})) \ \text{is an inflection point.} \end{array}$

Problem 5.

(A) $-\cos 2x + C$. (B) $1/4x^4 + 2/3x^3\pi + C$. (C) $\frac{1}{4}e^{4x} + C$. (D) $(6/5)x^{5/2} + \ln|x| + C$. (E) $(1/18)(2x^2 - 3x^4)^{18} + C$

Problem 6.

 $30^0 = \pi/6, 1/\sqrt{3} = \tan(\pi/6) = 12/x$ and hence $x = 12\sqrt{3}$ feet.

Problem 7.

 $T(t) = 1/3t^3 - 2t^2 + C.$ T(0) = 108 so C = 108, $T(2) = 1/32^3 - 22^2 + 108 = 102.67$ degrees.