Summary of the fundamental theorems of vector calculus

Math 123

1 Fundamental theorem for path integrals.

1. (Theorem 6.1.1 in the book) Let $U \subset \mathbb{R}^n$ be an open connected set and let $f : U \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar-valued function whose gradient is continuous on U. If C is a continuous smooth path lying on U that joins a point **a** to another point **b**, then

$$\int_C \vec{\nabla} f \cdot d\mathbf{x} = f(\mathbf{b}) - f(\mathbf{a}).$$

- 2. We also have that for a continuous vector field $\mathbf{F} : U \to \mathbb{R}^n$, \mathbf{F} is **path independent on** U if and only if there exists a scalar-valued function $f : U \to \mathbb{R}$ such that $\overrightarrow{\nabla} f = \mathbf{F}$ and if and only if $\oint_C \mathbf{F} \cdot d\mathbf{x} = 0$ for all closed paths C that lie in U.
- 3. (Theorem 6.1.5 in the book) Let U be a simply connected open set in \mathbb{R}^n and let $\mathbf{F} : U \to \mathbb{R}^n$ be a vector field that is continuously differentiable. Then \mathbf{F} is path independent on U if and only if the Jacobian matrix $J\mathbf{F}(\mathbf{x})$ is symmetric for all $\mathbf{x} \in U$.
- 4. (Theorem 6.1.4 in the book) In \mathbb{R}^2 and \mathbb{R}^3 Theorem 6.1.5 in the book becomes, respectively,
 - a) Let U be a simply connected open set in \mathbb{R}^2 and let $\mathbf{F} : U \to \mathbb{R}^2$ be a vector field that is continuously differentiable. Then \mathbf{F} is path independent on U if and only if

$$\frac{\partial F_2}{\partial x}(x,y) - \frac{\partial F_1}{\partial y}(x,y) = 0 \qquad \text{for every } (x,y) \in U,$$

where F_1 , F_2 are the components of **F**.

b) Let U be a simply connected open set in \mathbb{R}^3 and let $\mathbf{F} : U \to \mathbb{R}^3$ be a vector field that is continuously differentiable. Then \mathbf{F} is path independent on U if and only if

$$\operatorname{curl} \mathbf{F} = 0 \qquad \text{in } U.$$

Remark: Path independence of the vector field \mathbf{F} depends on the set U. For example, the vector field

$$\mathbf{F}(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$

is path independent on the set $\{(x, y) : |y| > 0 \text{ or } x > 0\}$ (see problem 30 in §6.1 of the book) but it is not path independent on $\{(x, y) : (x, y) \neq (0, 0)\}$ (see example 6.1.2 in the book).

2 Green's theorem.

1. (Theorem 6.2.1 in the book) Let $U \subset \mathbb{R}^2$ be a simply connected open set, and $\mathbf{F}: U \to \mathbb{R}^2$ be a smooth vector field. Let R be a region contained in U with piecewise smooth counterclockwise-oriented boundary ∂R . Then

$$\oint_{\partial R} \mathbf{F} \cdot d\mathbf{x} = \iint_{R} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dx \, dy,$$

where F_1 , F_2 are the components of **F**.

2. In differential form notation, this is written

$$\oint_{\partial R} F_1 \, dx + F_2 \, dy = \iint_R \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dx \, dy.$$

Remark: Green's theorem relates a line integral over a closed curve (∂R) with a double integral over the region bounded by the curve (R). Pay attention to the orientation of ∂R !

3 The divergence theorem.

(Theorem 6.3.1 in the book) Let $V \subset \mathbb{R}^3$ be an **open connected** set, and let $\mathbf{F} : V \to \mathbb{R}^3$ be a smooth **vector field**. For any solid region S contained in V whose boundary ∂S is piecewise smooth and **oriented with the outward normal**, we have

$$\iint_{\partial S} \mathbf{F} \cdot \mathbf{n} \, d\sigma = \iiint_{S} \operatorname{div} \mathbf{F} \, dx \, dy \, dz$$

Remark: The divergence theorem relates a surface integral over the boundary of a solid region S with a triple integral over S. Be careful with the orientation of ∂S !

4 Stokes' theorem.

1. (Theorem 6.4.1 in the book) Let $U \subset \mathbb{R}^3$ be an **open connected set**, and let $\mathbf{F} : U \to \mathbb{R}^3$ be a **vector field** that is continuously differentiable. Let M be any piecewise smooth, simple, **oriented** surface lying in U, and let ∂M be a **positively oriented boundary path**. Then

$$\oint_{\partial M} \mathbf{F} \cdot d\mathbf{x} = \iint_M \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \, d\sigma$$

2. If M' is another surface with the same boundary curve ∂M as M and same orientations, then

$$\oint_{\partial M} \mathbf{F} \cdot d\mathbf{x} = \iint_{M'} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \ d\sigma,$$

and, hence,

$$\iint_{M} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \ d\sigma = \iint_{M'} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \ d\sigma.$$

Remark: Stokes' theorem relates a line integral over a closed curve in \mathbb{R}^3 (∂M) with a surface integral over a surface (M) whose boundary is the curve. Be careful with the orientations!