
Summary of the fundamental theorems of vector calculus
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1 Fundamental theorem for path integrals.

1. (Theorem 6.1.1 in the book) Let U ⊂ Rn be an open connected set and let f : U ⊂ Rn → R

be a scalar-valued function whose gradient is continuous on U. If C is a continuous smooth
path lying on U that joins a point a to another point b, then∫

C

−→
∇f · dx = f(b)− f(a).

2. We also have that for a continuous vector field F : U → R
n, F is path independent on

U if and only if there exists a scalar-valued function f : U → R such that
−→
∇f = F and

if and only if
∮
C F · dx = 0 for all closed paths C that lie in U.

3. (Theorem 6.1.5 in the book) Let U be a simply connected open set in Rn and let
F : U → R

n be a vector field that is continuously differentiable. Then F is path
independent on U if and only if the Jacobian matrix JF(x) is symmetric for all x ∈ U.

4. (Theorem 6.1.4 in the book) In R2 and R3 Theorem 6.1.5 in the book becomes, respec-
tively,

a) Let U be a simply connected open set in R2 and let F : U → R
2 be a vector field

that is continuously differentiable. Then F is path independent on U if and only if

∂F2

∂x
(x, y)− ∂F1

∂y
(x, y) = 0 for every (x, y) ∈ U,

where F1, F2 are the components of F.

b) Let U be a simply connected open set in R3 and let F : U → R
3 be a vector field

that is continuously differentiable. Then F is path independent on U if and only if

curl F = 0 in U.

Remark: Path independence of the vector field F depends on the set U. For example, the
vector field

F(x, y) =
(
−y

x2 + y2
,

x

x2 + y2

)
is path independent on the set {(x, y) : |y| > 0 or x > 0} (see problem 30 in §6.1 of the book)
but it is not path independent on {(x, y) : (x, y) 6= (0, 0)} (see example 6.1.2 in the book).
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2 Green’s theorem.

1. (Theorem 6.2.1 in the book) Let U ⊂ R2 be a simply connected open set, and

F : U → R
2 be a smooth vector field. Let R be a region contained in U

with piecewise smooth counterclockwise-oriented boundary ∂R. Then∮
∂R

F · dx =
∫∫

R

(
∂F2

∂x
− ∂F1

∂y

)
dx dy,

where F1, F2 are the components of F.

2. In differential form notation, this is written∮
∂R
F1 dx+ F2 dy =

∫∫
R

(
∂F2

∂x
− ∂F1

∂y

)
dx dy.

Remark: Green’s theorem relates a line integral over a closed curve (∂R) with a double
integral over the region bounded by the curve (R) . Pay attention to the orientation of
∂R!

3 The divergence theorem.

(Theorem 6.3.1 in the book) Let V ⊂ R3 be an open connected set, and let F : V → R
3 be a

smooth vector field. For any solid region S contained in V whose boundary ∂S is piecewise
smooth and oriented with the outward normal, we have∫∫

∂S
F · n dσ =

∫∫∫
S

div F dx dy dz.

Remark: The divergence theorem relates a surface integral over the boundary of a solid
region S with a triple integral over S. Be careful with the orientation of ∂S!

4 Stokes’ theorem.

1. (Theorem 6.4.1 in the book) Let U ⊂ R3 be an open connected set, and let F : U → R
3

be a vector field that is continuously differentiable. Let M be any piecewise smooth,
simple, oriented surface lying in U, and let ∂M be a positively oriented boundary
path. Then ∮

∂M
F · dx =

∫∫
M

curl F · n dσ.

2. If M ′ is another surface with the same boundary curve ∂M as M and same orientations,
then ∮

∂M
F · dx =

∫∫
M ′

curl F · n dσ,

and, hence, ∫∫
M

curl F · n dσ =
∫∫

M ′
curl F · n dσ.
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Remark: Stokes’ theorem relates a line integral over a closed curve in R
3 (∂M) with

a surface integral over a surface (M) whose boundary is the curve. Be careful with
the orientations!
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