Summary of integration formulas Math 123

1 Line integrals

Definitions

1. (Definition 5.2.1 in the book) The line integral of a continuous scalar-valued function $u: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ over a smooth path C lying in U and parametrized by $\mathbf{f}(t)$, $a \leq t \leq b$, is

$$
\int_{C} u d L=\int_{a}^{b} u(\mathbf{f}(t))\left\|\mathbf{f}^{\prime}(t)\right\| d t
$$

2. (Definition 5.2.2) The line integral of a continuous vector field $\mathbf{F}: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ over a smooth path C lying in U and parametrized by $\mathbf{f}(t), a \leq t \leq b$, is

$$
\int_{C} \mathbf{F} \cdot d \mathbf{x}=\int_{a}^{b} \mathbf{F}(\mathbf{f}(t)) \cdot \mathbf{f}^{\prime}(t) d t
$$

Remarks

1. Definition 1 is for scalar-valued functions and definition 2 is for vector fields.
2. If $u=1$ we obtain the length of C

$$
\operatorname{Length}(C)=\int_{C} 1 d L=\int_{a}^{b}\left\|\mathbf{f}^{\prime}(t)\right\| d t
$$

3. If C represents a thin wire with density of mass δ then the total mass of the wire is

$$
\text { Mass }=\int_{C} \delta d L=\int_{a}^{b} \delta(f(t))\left\|\mathbf{f}^{\prime}(t)\right\| d t
$$

4. Another notation for $\int_{C} \mathbf{F} \cdot d \mathbf{x}$ is

$$
\int_{C} F_{1} d x_{1}+F_{2} d x_{2}+\cdots+F_{n} d x_{n}
$$

where $F_{1}, F_{2}, \cdots F_{n}$ are the components of \mathbf{F}; that is $\mathbf{F}=\left(F_{1}, F_{2}, \cdots, F_{n}\right)$. In particular, in \mathbb{R}^{2} and \mathbb{R}^{3} we have, respectively,

$$
\begin{aligned}
& \int_{C} F_{1} d x+F_{2} d y \\
& \int_{C} F_{1} d x+F_{2} d y+F_{3} d z
\end{aligned}
$$

(See page 286, formula 5.2.5 in the book).

2 Surface integrals.

Definitions

1. (Definition 5.5.2 in the book) Let M be a smooth surface in \mathbb{R}^{3} that is parametrized by $\mathbf{f}(s, t),(s, t) \in R \subset \mathbb{R}^{2}$. The surface area of M is

$$
\sigma(M)=\iint_{R}\left\|\frac{\partial \mathbf{f}}{\partial s}(s, t) \times \frac{\partial \mathbf{f}}{\partial t}(s, t)\right\| d s d t
$$

2. (Definition 5.6 .1 in the book) Let $g: U \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a continuous scalar-valued function and let M be a smooth surface lying in U that is parametrized by $\mathbf{f}(s, t)$, $(s, t) \in R \subset \mathbb{R}^{2}$. The surface integral of g over M is

$$
\iint_{M} g d \sigma=\iint_{R} g(\mathbf{f}(s, t))\left\|\frac{\partial \mathbf{f}}{\partial s}(s, t) \times \frac{\partial \mathbf{f}}{\partial t}(s, t)\right\| d s d t
$$

3. (Definition 5.6 .2 in the book) Let $\mathbf{F}: U \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a continuous vector field and let M be a smooth surface lying in U that is parametrized and oriented by $\mathbf{f}(s, t)$, $(s, t) \in R \subset \mathbb{R}^{2}$. The surface integral of \mathbf{F} over M is

$$
\iint_{M} \mathbf{F} \cdot \mathbf{n} d \sigma=\iint_{R} \mathbf{F}(\mathbf{f}(s, t)) \cdot\left(\frac{\partial \mathbf{f}}{\partial s}(s, t) \times \frac{\partial \mathbf{f}}{\partial t}(s, t)\right) d s d t
$$

Remarks

1. Definition 2 is for scalar-valued functions in \mathbb{R}^{3} and definition 3 is for vector fields in \mathbb{R}^{3}.
2. If, for example, the surface can be parametrized by x and y in some region $R \subset \mathbb{R}^{2}$ in the form $f(x, y)=(x, y, h(x, y))$, and \mathbf{n} points up, then

$$
\left(\frac{\partial \mathbf{f}}{\partial x}(x, y) \times \frac{\partial \mathbf{f}}{\partial y}(x, y)\right)=\left(-h_{x},-h_{y}, 1\right)
$$

and

$$
\iint_{M} \mathbf{F} \cdot \mathbf{n} d \sigma=\iint_{R} \mathbf{F}(x, y, h(x, y)) \cdot\left(-h_{x},-h_{y}, 1\right) d x d y .
$$

3 Change of variables.

Formulas

1. (Theorem 5.7.1 in the book) Let g be a continuous function on a region $R \subset \mathbb{R}^{2}$ parametrized by $\mathbf{f}(s, t)$ for $(s, t) \in R^{*} \subset \mathbb{R}^{2}$, where \mathbf{f} is a smooth one-to-one function. Then,

$$
\iint_{R} g(x, y) d x d y=\iint_{R^{*}} g(\mathbf{f}(s, t))\left|\frac{\partial \mathbf{f}(s, t)}{\partial(s, t)}\right| d s d t
$$

2. (Formula 5.8 .1 in the book) Let g be a continuous function on a solid region $S \subset \mathbb{R}^{3}$ parametrized by $\mathbf{f}(s, t, u)$ for $(s, t, u) \in S^{*} \subset \mathbb{R}^{3}$, where \mathbf{f} is a smooth one-to-one function. Then,

$$
\iiint_{S} g(x, y, z) d x d y d z=\iiint_{S^{*}} g(\mathbf{f}(s, t, u))\left|\frac{\partial \mathbf{f}(s, t, u)}{\partial(s, t, u)}\right| d s d t d u
$$

Remarks

1. If we use polar coordinates in two dimensions then

$$
\left|\frac{\partial(x, y)}{\partial(r, \theta)}\right|=r
$$

2. If we use cylindrical coordinates in three dimensions then

$$
\left|\frac{\partial(x, y, z)}{\partial(r, \theta, w)}\right|=r
$$

3. If we use spherical coordinates in three dimensions then

$$
\left|\frac{\partial(x, y, z)}{\partial(\rho, \theta, \Phi)}\right|=\rho^{2} \sin \Phi
$$

