Math 123 - Calculus III Practice Problems - Midterm Exam Spring 2004

$$
\text { The midterm exam is on Tuesday, March 16, 5:45p.m.-7:45p.m. - } 1005 \text { Haworth. }
$$

The exam will cover the following sections from the textbook:

- Sections B1.5, B1.6, B1.7, B2.1, B2.2, B2.3, B2.4, B3.1, B3.2, B.3.3, B3.4, B3.5, B3.6.
- Sections S1.3, S1.4.

These problems are intended to be used as part of a review for the midterm exam. Do not confuse this, however, with a sample midterm. The problems below are not a substitute for studying all the material covered in class and the homework assignments. Review also the material for the first test.

Problems from the text book:

- Sec. B2.3: 2, 14c), 17a).
- Sec. B2.4: 1, 8.
- Sec. B3.1: 3, 12.
- Sec. B3.2: 13, 25.
- Sec. B3.3: 2, 10.
- Sec. B3.4: 8, 10, 13, 17, 20, 27.
- Sec. B3.5: 4, 8, 17, 19.
- Sec. B3.6: 1, 7, 13, 15, 19, 23, 24, 27.

Additional problems:

1. Answer the following true or false.
a) T F Let A, B be $n \times n$ invertible matrices. Then $(A B)^{-1}=A^{-1} B^{-1}$.
b) T F A homogeneous system of three equations in four unknowns has no solution.
c) T F Let $A \mathbf{x}=\mathbf{b}$ be an $m \times n$ linear system. Then $\mathbf{b} \in \mathbf{R}^{n}$.
2. Given $g(x, y)=\sqrt{x^{2}+y^{2}}$, (a) Sketch the level curves of this function in the $x y$-plane, (b) sketch the graph of the function.
3. If $g, h: \mathbf{R}^{2} \rightarrow \mathbf{R}$ and $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$ are functions with continuous partial derivatives and $F: \mathbf{R}^{3} \rightarrow \mathbf{R}$ is defined by $F(s, t, u)=f\left(g(s, t), t u^{2}, h(s, u)\right)$. Express $\partial F / \partial u$ in terms of the partial derivatives of the functions $f(x, y, z), g(s, t)$ and $h(s, u)$.
4. Find (a) the Jacobian matrix of $f(x, y)=\left(x^{2} y-e^{y}, x e^{x y}, e^{x} y^{3}\right)$ at $(1,-1)$ and (b) the Jacobian matrix of $g(s, t, u)=\left(s^{3} t u^{2}-s u, s t, t^{u}\right)$ at $(-1,0,-1)$.
5. Given $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ and $g: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ such that $f(1,1)=(1,0), J(g \circ f)(1,1)=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$ and $J g(1,0)=\left[\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right]$, find $J f(1,1)$.
6. The augmented matrix of a sytem of equations and its reduced row echelon form is given below.

$$
\left[\begin{array}{rrrrr}
1 & 2 & 0 & 4 & -5 \\
-3 & -6 & 1 & -9 & 22 \\
4 & 8 & 0 & 16 & -19
\end{array}\right] \longrightarrow \operatorname{rref}\left[\begin{array}{lllll}
1 & 2 & 0 & 4 & 0 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

a) Does the system have solutions?
b) Find all the solutions of the linear system

$$
\left[\begin{array}{rrr}
1 & 2 & 0 \\
-3 & -6 & 1 \\
4 & 8 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-4 \\
-9 \\
16
\end{array}\right] .
$$

7. For what values of a is $A=\left[\begin{array}{rr}a-2 & 2 \\ a-2 & a+2\end{array}\right]$ singular?
(A) 0,2
(B) $-2,4$
(C) 2, 4
(D) 2
(E) $0,-2$
8. The matrix expression $(A+B)(A-B)$ can be rewritten as
(a) $A^{2}-B^{2}$
(b) $A^{2}-A B+B A-B^{2}$
(c) $A^{2}-B A+A B-B^{2}$
(d) all of the above (e) none of the above
9. Which of the following is a reduced row echelon form?
(A) $\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
(B) $\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0\end{array}\right]$
(C) $\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
(D) $\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
(E) none of the above
10. The figure below represents level sets of a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$.

(a) At the point P, is $\frac{\partial f}{\partial y}$ positive or negative?
(b) Estimate $\frac{\partial f}{\partial x}$ at the point $Q=(2,0)$.
