MATH 124 - Fall 2004 Practice Problems for Exam 1

1. A point has position at time t given by $\mathbf{x}(t)=\left(t, t^{2}, 1+t^{2}\right)$, for $0 \leq t \leq 1$. At time $t=1$ the point leaves this curve and flies off along the tangent line while maintaining the constant velocity attained at $t=1$. Where is the point at at $t=2$?
2. Consider the surface given by the graph of the function $f(x, y)=2 y^{2}-x^{2} y$.
a) Find an equation of the tangent plane to the surface at the point $P(1,1,1)$.
b) Find the equation of the normal line to the surface at the same point.
c) A curve given by the vector valued function $\mathbf{x}(t)$ satisfies that $\mathbf{x}(1)=(1,1,1)$ and $\mathbf{x}^{\prime}(1)=(4,0,1)$. Can a small arc of the curve be contained in the given surface for t close to 1 ? Justify your answer.
3. A cyclist goes on a mountain road and, at time t, her position path is given by $\mathbf{x}(t)=$ $\left(t, 2 / 3 t^{3 / 2}, 2-t^{2}\right)$. On which of the following two mountains does her path lie?
Mountain 1 has height $z=H_{1}(x, y)=2+9 / 4 y^{2}-x^{3}-x^{2}$.
Mountain 2 has height $z=H_{2}(x, y)=2+3 / 2 y-x^{2}-x^{3}$.
4. A particle is traveling in space with its position given by $\mathbf{x}(t)=t^{2} \vec{i}+t \vec{j}+2 t^{2} \vec{k}$.
(a) Find the velocity vector of the particle at time $t=4$.
(b) Find the acceleration vector for the particle as a function of t.
5. A caterpillar is standing on a hill whose height is given by

$$
H(x, y)=x^{3}-x y
$$

Take "North" to be the direction of the positive y-axis and "East" to be the positive x -axis and use this information to answer the following questions:
(a) If the caterpillar is standing at the point $(2,1)$ and begins walking South, is it going uphill, downhill, or neither?
(b) If the caterpillar is standing at the point $(1,1)$ and walks 1 units South, then 2 units West, what is the total change in elevation?
(c) If the caterpillar is standing at the point $(-1,2)$, describe the direction (by a unit vector) that the caterpillar should move to go uphill fastest.
6. Circle only one of the given answers for each question.
a) Let $f(x, y, z)=e^{x+y} \cos z$. Then $\nabla f(0,0, \pi)$ is
(A) $-\vec{i}-\vec{j}$
(B) $\vec{i}+\vec{j}$
(C) $\vec{i}-\vec{j}+\vec{k}$
(D) $\vec{i}+\vec{j}-\vec{k}$
b) The tangent plane to the surface $x^{4}-x y+z^{2}=1$ at $(0,1,1)$ is
(A) $-x+2 z=2$
(B) $y+z=2$
(C) $-x+y+2 z=3$
(D) $2 z=2$
c) The level surfaces of the function $f(x, y, z)=x+2 y+z-5$ are
(A) planes perpendicular to $(1,2,1)$
(B) planes perpendicular to $(1,2,-5)$
(C) concentric spheres
(D) none of the previous.
7. Suppose that the gradient $\nabla f(2,4)$ of a function $f(x, y)$ has length 5 . Is there a unit vector \mathbf{u} for which the directional derivative $D_{\mathbf{u}} f$ at the point $(2,4)$ is 7 ? Justify your answer.
8. Calculate the area of the triangle with vertices $(1,2,3),(4,-2,1)$ and $(-3,1,0)$.
9. Give a set of parametric equations for the plane determined by $2 x+3 y-5 z=30$.
10. Determine all second order partial derivatives of the function $f(x, y)=\sin \sqrt{x^{2}+y^{2}}$.
11. Compute the matrix of partial derivatives $D \mathbf{f}(\mathbf{a})$ where $\mathbf{f}(s, t)=\left(s^{2}, s t, t^{2}\right)$ and $\mathbf{a}=$ $(1,-1)$
12. Compute the matrix of partial derivatives $D(\mathbf{f} \circ \mathbf{g})$, where $\mathbf{f}(x, y, z)=\left(x+y+z, x y z, e^{z}\right)$ and $\mathbf{g}(s, t)=\left(s t, s+t, t^{3}\right)$.
13. Let $\mathbf{f}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ and $\mathbf{g}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be two functions such that $\mathbf{f}(1,1)=(1,0)$, $D \mathbf{f}(1,1)=\left[\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right], \quad D \mathbf{f}(1,0)=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \quad D \mathbf{g}(1,1)=\left[\begin{array}{rr}1 & 1 \\ -1 & 0\end{array}\right], \quad$ and $\quad D \mathbf{g}(1,0)=$ $\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$. Then,

$$
D(\mathbf{g} \circ \mathbf{f})(1,1)=
$$

(A) $\left[\begin{array}{rr}3 & 1 \\ -2 & -1\end{array}\right]$
(B) $\left[\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right]$
(C) $\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
(D) $\left[\begin{array}{rr}1 & 0 \\ -2 & -1\end{array}\right]$
(E) None of the above.
14. Mark all the correct answers. Let $f(x, y)$ be a function of two variables. Then, $\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)$ is equal to
(A) $\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)$.
(B) the rate of change of f with respect to x at the point $\left(x_{0}, y_{0}\right)$ when $y=y_{0}$ is fixed.
(C) the slope of the tangent line to the curve of intersection of the plane $y=y_{0}$ with the graph of $z=f(x, y)$ at the point $\left(x_{0}, y_{0}\right)$.
(D) all of the above.
15. Write an equation for the tangent plane to the surface given by the level set corresponding to the value 3 of the function $F: R^{3} \rightarrow R, F(x, y, z)=y^{4} x+z^{2} y+z x^{3}$, at the point $(1,1,1)$.

