MATH 124 - Fall 2004
Practice Problems for Exam 3

1. (a) Compute the line integral of the vector field $\mathbf{F}=\left(3 x^{2} y, x^{3}+3 y^{2}\right)$ along the segment from $(1,1)$ to $(2,2)$ by direct computation.
(b) Show that $\mathbf{F}=\left(3 x^{2} y, x^{3}+3 y^{2}\right)$ is a conservative vector field.
(c) Find a potential for $\mathbf{F}=\left(3 x^{2} y, x^{3}+3 y^{2}\right)$.
(d) Compute the line integral of the vector field $\mathbf{F}=\left(3 x^{2} y, x^{3}+3 y^{2}\right)$ along any curve from $(1,1)$ to $(2,2)$.
2. (a) Consider the vector field $\mathbf{G}(x, y)=\left(2 y+x^{3}, x\right)$. Show that \mathbf{G} is not conservative.
(b) Compute the line integral

$$
\oint_{C} \mathbf{G} \cdot d \mathbf{x},
$$

where the curve C is the boundary of the square $[0,1] \times[0,1]$ oriented counterclockwise.
3. Consider the curve γ given by the three sides of the triangle from $(0,0)$ to $(1,0)$ to $(0,1)$ oriented counterclockwise. Show that

$$
\int_{\gamma}\left(-x y+\sin x^{2}\right) d x+\cos y^{2} d y=1 / 6
$$

4. Show that the line integral of $\mathbf{F}=\left(x /\left(x^{2}+y^{2}\right), y /\left(x^{2}+y^{2}\right)\right)$ along any closed curve that does not have the point $(0,0)$ in its interior is zero.
5. Let \mathbf{F} and \mathbf{G} are vector fields in R^{3} (appropriately differentiable). Show that

$$
\operatorname{div}(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot \nabla \times \mathbf{F}-\mathbf{F} \cdot \nabla \times \mathbf{G}
$$

6. Compute the flux of the vector field $\mathbf{F}(x, y, z)=(x, y, z)$ across the sphere of radius one in the direction to the normal pointing to the inside.
7. Let S be the parametric surface given by

$$
\mathbf{X}(x, z)=\left(x, x^{3}+z, z\right)
$$

for $0 \leq x \leq 2$ and $0 \leq z \leq 3$.
(a) Find the equation of the tangent plane to surface S at the point $(1,2,1)$.
(b) Set up an integral to compute the area of the parametric surface S. DO NOT COMPUTE THE INTEGRAL.
8. (a) Compute the unit normal vector \mathbf{n} pointing to the outside at each point of the cylinder given by

$$
\mathbf{X}(u, v)=(\cos u, \sin u, v)
$$

for $0 \leq u \leq 2 \pi, 0 \leq v \leq 1$.
(b) Compute the flux of the vector field \mathbf{F} across the cylinder S of part (a),

$$
\operatorname{FLUX}=\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

where

$$
\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}
$$

9. Compute

$$
\iint_{S} z^{3} d S
$$

where S is the sphere of radius one centered at the origin.
10. Consider the paraboloid M given by $z=1-\left(x^{2}+y^{2}\right)$ for $0 \leq x^{2}+y^{2} \leq 1$.
(a) Write a parametrization of M of the form $\mathbf{f}(x, y)=(x, y, h(x, y))$.
(b) Compute the unit normal to the surface M, "pointing up".

