Bonus Homework

Math 766
Spring 2012

1) For $E_{1}, E_{2} \subset \mathbb{R}^{n}$, define

$$
E_{1}+E_{2}=\left\{x+y: x \in E_{1}, y \in E_{2}\right\} .
$$

(a) Prove that if E_{1} and E_{2} are compact, then $E_{1}+E_{2}$ is compact.

Proof: Since $E_{1}+E_{2} \subset \mathbb{R}^{n}$, it is sufficient to prove that $E_{1}+E_{2}$ is closed and bounded.
$E_{1}+E_{2}$ is bounded: Since E_{1} and E_{2} are compact, they are bounded. So there exists $M>0$ such that $|x|<M$ for all $x \in E_{1}$ and $|y|<M$ for all $y \in E_{2}$. Then for $z \in E_{1}+E_{2}$, there exist $x \in E_{1}$ and $y \in E_{2}$ such that $z=x+y$. So

$$
|z| \leq|x|+|y|<2 M
$$

Hence $E_{1}+E_{2}$ is bounded.
$E_{1}+E_{2}$ is closed: Let $\left\{z_{n}\right\} \subset E_{1}+E_{2}$ such that $z_{n} \rightarrow z$ for some $z \in \mathbb{R}^{n}$. There exist $x_{n} \in E_{1}$ and $y_{n} \in E_{2}$ such that $z_{n}=x_{n}+y_{n}$ for each $n \in \mathbb{N}$. Since E_{1} is compact and $\left\{x_{n}\right\} \subset E_{1}$, there exists a subsequence $\left\{x_{n_{k}}\right\} \subset\left\{x_{n}\right\}$ and $x \in E_{1}$ such that $x_{n_{k}} \rightarrow x$ as $k \rightarrow \infty$. Now since E_{2} is compact and $\left\{y_{n_{k}}\right\} \subset E_{2}$, there exists a subsequence $\left\{y_{n_{k_{\ell}}}\right\} \subset\left\{y_{k}\right\}$ and $y \in E_{2}$ such that $y_{n_{k_{\ell}}} \rightarrow y$ as $\ell \rightarrow \infty$. Then take $z_{n_{k_{\ell}}} \subset\left\{z_{n}\right\}$ and since $z_{n} \rightarrow z$

$$
\begin{aligned}
z=\lim _{\ell \rightarrow \infty} z_{n_{k_{\ell}}} & =\lim _{\ell \rightarrow \infty} x_{n_{k_{\ell}}}+y_{n_{k_{\ell}}} \\
& =x+y .
\end{aligned}
$$

But since $x \in E_{1}$ and $y \in E_{2}$, it follows that $z=x+y \in E_{1}+E_{2}$. Therefore $E_{1}+E_{2}$ is closed. Hence $E_{1}+E_{2}$ is closed and bounded.
(b) There exists a closed set $E \subset \mathbb{R}$ such that $E+\mathbb{N}$ is not closed

Proof: Define

$$
E=\left\{a_{n}\right\}_{n \in \mathbb{N}} \text { where } a_{n}=\frac{1}{n}-n
$$

For all $n \in \mathbb{N}, a_{n}>n_{n+1}$ and $a_{n} \rightarrow-\infty$ as $n \rightarrow \infty$. Then it follows that

$$
E^{c}=\left(a_{1}, \infty\right) \cup\left[\bigcup_{n \in \mathbb{N}}\left(a_{n+1}, a_{n}\right)\right]
$$

which is an open set. So E is closed. Now for each $n \in \mathbb{Z}$, we have $\frac{1}{n} \in E+\mathbb{N}$ since

$$
\frac{1}{n}=\left(\frac{1}{n}-n\right)+n \in E+\mathbb{N}
$$

But $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$ and $0 \notin E+\mathbb{N}$. It can be seen that $0 \notin E+\mathbb{N}$ since for all $k, n \in \mathbb{N}$

$$
k-n<\frac{1}{n}-n+k<k+1-n
$$

which implies that $E+\mathbb{N} \subset \mathbb{R} \backslash \mathbb{Z}$. Then $E+\mathbb{N}$ is not closed.
2) If $\sum_{n=1}^{\infty} f_{n}$ converges pointwise to a continuous function f on $[0,1]$ and every f_{n} is continuous and non-negative on $[0,1]$, then $\sum_{n=1}^{\infty} f_{n}$ converges uniformly to f on $[0,1]$.
Proof: Let $\varepsilon>0$ and define for $N \in \mathbb{N}$

$$
K_{N}=K_{N}(\varepsilon)=\left\{x: f(x)-\sum_{n=1}^{N} f(x) \geq \varepsilon\right\} .
$$

For each $x \in[0,1]$, since $f_{n} \geq 0$ for all $n \in \mathbb{N}$

$$
f(x)=\sum_{n=1}^{\infty} f_{n}(x) \geq \sum_{n=1}^{N} f_{n}(x)
$$

for every $N \in \mathbb{N}$. Since $\sum_{n=1}^{\infty} f_{n}=f$ pointwise on $[0,1]$, for each $x \in[0,1]$ there exists $N_{0}=N_{0}(x, \varepsilon) \in$ \mathbb{N} such that $N>N_{0}$ implies

$$
f(x)-\sum_{n=1}^{N} f_{n}(x)=\left|f(x)-\sum_{n=1}^{N} f_{n}(x)\right|<\varepsilon .
$$

That is for each $x \in[0,1]$, there exists $N_{0}=N_{0}(x, \varepsilon)$ such that $x \notin K_{N_{0}}$. Then

$$
\bigcap_{N \in \mathbb{N}} K_{N}=\emptyset
$$

Also $K_{N+1} \subset K_{N}$ for all $N \in \mathbb{N}$ since for any $x \in K_{N+1}$ we have

$$
f(x)-\sum_{n=1}^{N} f_{n}(x) \geq f(x)-\sum_{n=1}^{N+1} f_{n}(x) \geq \varepsilon .
$$

Since f_{n} and f are continuous, so is $f-\sum_{n=1}^{N} f_{n}(x)$, and so

$$
K_{N}=\left\{x: f(x)-\sum_{n=1}^{N} f(x) \geq \varepsilon\right\}
$$

is a closed set. Also $K_{N} \subset[0,1]$, so K_{N} is compact. Then K_{N} are a nested sequence of compact sets with empty intersection. Therefore by Cantor's intersection theorem, there exists $N_{0}=N_{0}(\varepsilon) \in \mathbb{N}$ such that $K_{N_{0}}=\emptyset$. Then if $n>N_{0}$, then for all $x \in[0,1]$

$$
\left|f(x)-\sum_{n=1}^{N} f_{n}(x)\right|=f(x)-\sum_{n=1}^{N} f_{n}(x)<\varepsilon .
$$

Hence $\sum_{n=1}^{N} f_{n}(x)$ converges uniformly to f on $[0,1]$.
3) Let $\psi \in C[0,1]$ and define for $f, g \in C[0,1]$

$$
\rho_{\psi}(f, g)=\int_{0}^{1} \psi(x)|f(x)-g(x)| d x
$$

- If $\psi(x)>0$ for all $x \in[0,1]$, then ρ_{ψ} is a metric on $C[0,1]$
- If $\psi(x)=0$ for $0 \leq x \leq 1 / 2$ and $\psi(x)=x-1 / 2$ for $1 / 2<x \leq 1$, then ρ_{ψ} is not a metric on $C[0,1]$.

Proof: For any $f, g \in C[0,1], \rho_{\psi}(f, g)$ is well defines since $\psi(x)|f(x)-g(x)|$ is a continuous and hence integrable function on $[0,1]$. Also

$$
\rho_{\psi}(f, g)=\int_{0}^{1} \psi(x)|f(x)-g(x)| d x=\int_{0}^{1} \psi(x)|g(x)-f(x)| d x=\rho_{\psi}(g, f) .
$$

Now assume that $f \neq g$. Then there exists $x_{0} \in[0,1]$ such that $f\left(x_{0}\right) \neq g\left(x_{0}\right)$. Since $|f(x)-g(x)|$ is continuous at x_{0} and $\left|f\left(x_{0}\right)-g\left(x_{0}\right)\right|>0$, there exists $\delta>0$ such that for all $x \in[0,1]$ such that $\left|x-x_{0}\right|<\delta$

$$
\left||f(x)-g(x)|-\left|f\left(x_{0}\right)-g\left(x_{0}\right)\right|\right|<\frac{\left|f\left(x_{0}\right)-g\left(x_{0}\right)\right|}{2}
$$

which implies that for $x \in[0,1]$ such that $\left|x-x_{0}\right|<\delta$

$$
|f(x)-g(x)| \geq \frac{\left|f\left(x_{0}\right)-g\left(x_{0}\right)\right|}{2}
$$

Also since ψ is continuous with $\psi(x)>0$, there exists $x_{1} \in\left[x_{0}-\delta, x_{0}+\delta\right] \cap[0,1]$ such that

$$
\varepsilon=\inf _{x \in\left[x_{0}-\delta, x_{0}+\delta\right]} \psi(x)
$$

Without loss of generality assume that $x_{0} \neq 1$. Then

$$
\begin{aligned}
\rho_{\psi}(f, g) & =\int_{0}^{1} \psi(x)|f(x)-g(x)| d x \\
& \geq \int_{x_{0}}^{x_{0}+\delta} \psi(x)|f(x)-g(x)| d x \\
& \geq \varepsilon \delta \frac{\left|f\left(x_{0}\right)-g\left(x_{0}\right)\right|}{2} .
\end{aligned}
$$

A symmetric argument holds if $x_{0}=1$ using that $x_{0} \neq 0$. On the other hand if $f=g$, then $f(x)=g(x)$ for all $x \in[0,1]$ and

$$
\rho_{\psi}(f, g)=\int_{0}^{1} \psi(x)|f(x)-g(x)| d x=0 .
$$

So $\rho_{\psi}(f, g)=0$ if and only if $f=g$. Finally for $f, g, h \in C(0,1)$

$$
\begin{aligned}
\rho_{\psi}(f, g) & =\int_{0}^{1} \psi(x)|f(x)-g(x)| d x \\
& \leq \int_{0}^{1} \psi(x)|f(x)-h(x)| d x+\int_{0}^{1} \psi(x)|h(x)-g(x)| d x \\
& =\rho_{\psi}(f, h)+\rho_{\psi}(h, g)
\end{aligned}
$$

So ρ_{ψ} is a metric on $C(0,1)$. If $\psi(x)=0$ for $0 \leq x \leq 1 / 2$ and $\psi(x)=x-1 / 2$ for $1 / 2<x \leq 1$, then to see that ρ_{ψ} is not a metric define

$$
f(x)=\left\{\begin{array}{lll}
x-\frac{1}{2} & x \in\left[0, \frac{1}{2}\right] \\
0 & x \in\left(\frac{1}{2}, 1\right]
\end{array} \quad g(x)=0\right.
$$

which are both continuous on $[0,1]$. But the we have that $f \neq g$ and

$$
\rho_{\psi}(f, g)=\int_{\frac{1}{2}}^{1}\left(x-\frac{1}{2}\right)|f(x)-g(x)| d x=0 .
$$

So ρ_{ψ} cannot be a metric.
4) Let (X, ρ) be a metric space and $E \subset X$ be closed. Then f defined

$$
f(x)=\inf \{\rho(x, y): y \in E\}
$$

is continuous and $f(x)=0$ if and only if $x \in E$.
Proof: Let $x \in X$ and $\varepsilon>0$. For any $z \in B_{\varepsilon / 2}(x)$ and $y \in E$, by the triangle inequality we have

$$
\begin{aligned}
& \rho(x, y) \leq \rho(x, z)+\rho(z, y)<\frac{\varepsilon}{2}+\rho(z, y) \\
& \rho(y, z) \leq \rho(y, x)+\rho(x, z)<\rho(y, x)+\frac{\varepsilon}{2} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& f(x)=\inf _{y \in E} \rho(x, y) \leq \rho(x, z)+\inf _{y \in E} \rho(z, y) \leq \frac{\varepsilon}{2}+f(z)<\varepsilon+f(z) \\
& f(z)=\inf _{y \in E} \rho(y, z) \leq \inf _{y \in E} \rho(y, x)+\rho(x, z) \leq f(x)+\frac{\varepsilon}{2}<f(x)+\varepsilon .
\end{aligned}
$$

Hence $z \in B_{\varepsilon / 2}$ implies that $|f(x)-f(z)|<\varepsilon$ and f is continuous on X. If $f(x)=0$, then for all $n \in \mathbb{N}$ there exists $y_{n} \in E$ such that

$$
\rho\left(x, y_{n}\right)<\inf _{y \in E}(x, y)+\frac{1}{n}=f(x)+\frac{1}{n}=\frac{1}{n} .
$$

Then $\rho\left(x, y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ which means that $y_{n} \rightarrow x$ in X as $n \rightarrow \infty$. But E is closed, so $x \in E$. On the other hand, if $x \in E$, then

$$
0 \leq \inf _{y \in E} \rho(x, y) \leq \rho(x, x)=0
$$

Then $f(x)=0$ if and only if $x \in E$.
5) Let $f: U \rightarrow V$ be a continuously differentiable function between two nonempty open sets $U, V \subset \mathbb{R}^{n}$. Suppose that the Jacobian determinant of f is never zero on U, that $f^{-1}(K)$ is compact for any compact set $K \subset V$, and that V is connected. Then $f(U)=V$
Proof: First I claim that $f(U)$ is an open set in \mathbb{R}^{n} and hence an open set in the subspace topology of V. Fix $y=f(x) \in f(U)$ where $x \in U$. Since $\nabla f(x) \neq 0$, by the inverse function theorem, there exist open neighborhoods $U_{x} \subset U$ of x and $V_{y} \subset V$ of y such that f is 1-1 from U_{x} onto V_{y} and f^{-1}
is continuously differentiable on V_{y}. That is $V_{y}=f\left(U_{x}\right)$ is an open neighborhood of y contained in $f(U)$. Hence $f(U)$ is open. Now I claim that $f(U)$ is a closed set in the subspace topology of V. Let $y_{n} \in f(U)$ where $y_{n} \rightarrow y$ as $n \rightarrow \infty$ for some $y \in V$. Define $K=\left\{y_{n}\right\}_{n \in \mathbb{N}} \cup\{y\} \subset V$. Since $y_{n} \rightarrow y$, it follows that K is compact. There exist $x_{n} \in f^{-1}(K) \subset U$ such that $f\left(x_{n}\right)=y_{n}$. By assumption $f^{-1}(K) \subset U$ is also compact, so there exists a subsequence $\left\{x_{n_{k}}\right\} \subset\left\{x_{n}\right\}$ converging to some $x^{\prime} \in f^{-1}(K) \subset U$ as $k \rightarrow \infty$. Since f is continuous,

$$
f\left(x^{\prime}\right)=\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=\lim _{n \rightarrow \infty} y_{n}=y .
$$

Therefore $y \in f(U)$, which proves that $f(U)$ is closed in V. Then $f(U)$ and $V \backslash f(U)$ are open sets in V. Moreover $f(U) \cap(V \backslash f(U))=\emptyset$ and $f(U) \cup(V \backslash f(U))=V$. Since V is connected, either $f(U)=\emptyset$ or $V \backslash f(U)=\emptyset$. Since U is nonempty, $f(U) \neq \emptyset$. Therefore $V \backslash f(U)=\emptyset$ and it follows that $V \subset f(U)$. The oposite inclusion, $f(U) \subset V$, follows trivially since $f: U \rightarrow V$. So we have that $f(U)=V$.

