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Bonus Homework

Math 766
Spring 2012

For E1,E> C R", define
Ei+E, = {x+y:x eE|,ye Ez}.

Prove that if E| and E, are compact, then E| + E> is compact.

Proof: Since E| + E, C R", it is sufficient to prove that E| + E» is closed and bounded.

E| + E> is bounded: Since E| and E; are compact, they are bounded. So there exists M > 0 such
that |x| < M for all x € E| and |y| < M for all y € E. Then for z € E| + E;, there exist x € Ej and
y € E; such that z=x+y. So

o < [x[+[y[ <2M.

Hence E| + E; is bounded.

E| + E; is closed: Let {z,} C Ej + E> such that 7, — z for some z € R”. There exist x, € E] and
yn € E; such that z, = x,, +y, for each n € N. Since E; is compact and {x,} C E|, there exists a
subsequence {x,, } C {x,} and x € E; such that x,, — x as k — co. Now since E; is compact and
{ym} C Ex, there exists a subsequence {y,, } C {y¢} and y € E3 such that y, — y as £ — co. Then
take 2, C {z,} and since z, — z

z= }I_EIOIOZ”@ = gh_{?ox”"f + Yy,
=Xty

But since x € E| and y € Ej, it follows that z = x+y € E| + E;. Therefore E| + E> is closed.
Hence E| + E> is closed and bounded. O

There exists a closed set E C R such that £ + N is not closed
Proof: Define

1
E ={ap}nen Where a, = — —n
n

Foralln € N, a, > n,11 and a,, — —o as n — oo. Then it follows that

E‘ = (aj,>)U [U (an+l’a")]

neN

which is an open set. So E is closed. Now for each n € Z, we have % € E + N since
1 1
- = (——n) +nec E+N.
n n

1
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But%—>0asn—>ooand0¢E—|—N. It can be seen that 0 ¢ E + N since for all k,n € N
1
k—n<-—n+k<k+1—n,
n

which implies that E + N C R\Z. Then E + N is not closed. U

If Y | fn converges pointwise to a continuous function f on [0, 1] and every f, is continuous and
non-negative on [0, 1], then }'>_, f,, converges uniformly to f on [0, 1].
Proof: Let € > 0 and define for N € N

N
Ky = Kn(g) = {x:f(x) — Zf(x) > 8}.
For each x € [0, 1], since f, >0 foralln € N

forevery N € N. Since Y~ f, = f pointwise on [0, 1], for each x € [0, 1] there exists Ny = No(x,€) €
N such that N > Ny implies

< E.

N N
fx) - Z_:lfn(X) = ‘f(X) - Z_:lfn(X)

That is for each x € [0, 1], there exists No = Np(x, €) such that x ¢ Kj,. Then
() Kv =0.
NeN
Also Ky C Ky for all N € N since for any x € Ky we have

N+1

N
flx)— Zlfn(x) > f(x)— Zl fulx) > €.

Since f, and f are continuous, so is f — Y _, f,(x), and so

N
Ky = {x:f(X)— ;f(x) 28}

is a closed set. Also Ky C [0, 1], so Ky is compact. Then Ky are a nested sequence of compact sets
with empty intersection. Therefore by Cantor’s intersection theorem, there exists No = Ny(€) € N
such that Ky, = 0. Then if n > Ny, then for all x € [0, 1]

N N
‘f(x) - Z_:lfn(x) =f(x)— ;fn(x) <E.

Hence YV, f,(x) converges uniformly to f on [0, 1]. O



3) Lety € C[0, 1] and define for f,g € C[0,1]

1
pul:8) = | WL (x) — (o)

— If y(x) > 0 for all x € [0, 1], then py, is a metric on C[0, 1]
- Ify(x) =0for 0 <x<1/2and y(x)=x—1/2for 1/2 <x <1, then py is not a metric on
o, 1].

Proof: For any f,g € C[0,1], py(f,g) is well defines since y(x)|f(x) — g(x)| is a continuous and
hence integrable function on [0, 1]. Also

1 1
Pulf28) = [ WL () —g)ldr = | wx)lgl) = F@)ldx = pye. ).

Now assume that f # g. Then there exists xg € [0, 1] such that f(xg) # g(xo). Since |f(x) — g(x)|
is continuous at xo and |f(xg) — g(x0)| > 0, there exists & > 0 such that for all x € [0, 1] such that
|x —xo| <&
X0) — &(xo
[1£(x) — g(0)] — [ f(x0) — g(xo)| | < M

which implies that for x € [0, 1] such that |x —xp| < &

|/ (x0) —g(x0)]|

70— g()] > L0
Also since y is continuous with y(x) > 0, there exists x; € [xo — 8,x0 + 8] N[0, 1] such that
€= inf X).
XG[XO*&XWLS]W( )

Without loss of generality assume that xy = 1. Then
1
Pulf.8) = [ W17 —s(ldx
x0+0
> [ ol = s

X0

> E8|f(xo) gg(xoﬂ'

A symmetric argument holds if x) = 1 using that xo # 0. On the other hand if f = g, then f(x) = g(x)
forall x € [0,1] and

1
py(f,g) = /0 Y)I£(x) — g(x)ldx = 0.

So py(f,g) = 0if and only if f = g. Finally for f,g,h € C(0,1)
1
pulf.8) = [ W17~ s(ldx

1 1
S/O Y(x)[f(x) —h(x)|dx+/0 Y (x)|A(x) — g(x)|dx
= p\V(fvh) +p\|/(h7g)'
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5)

So py is a metric on C(0, 1). If y(x) =0 for 0 <x < 1/2 and y(x) =x—1/2for 1/2 <x < 1, then
to see that py, is not a metric define

1 el
f(x):{)(; 2 xig’j}] g(x)=0

which are both continuous on [0, 1]. But the we have that f # g and

1

pulf8) = [ (x= )0 —gle)ldx =0.

2

So py cannot be a metric. U
Let (X,p) be a metric space and E C X be closed. Then f defined
f(x) =inf{p(x,y):y € E}

is continuous and f(x) =0 if and only if x € E.
Proof: Let x € X and € > 0. For any z € Be»(x) and y € E, by the triangle inequality we have

p(xy) <plx,2) +p(z,y) < §+p(z,y)
PO.2) < P() +P(2.2) < PLA) + 5.
Then
£06) = inf plr.y) < px.2) +infp(z.y) < 5 + /() <e+/(2)
£(2) = inf p(3,2) < inf p(3) +p(x.2) < F(0) + 5 < fx) e

Hence z € B/, implies that |f(x) — f(z)| < € and f is continuous on X. If f(x) = 0, then for all
n € N there exists y, € E such that

. 1 1 1
P(x,yn) < ylg]g(x,y) o= f@) =

Then p(x,y,) — 0 as n — oo which means that y, — x in X as n — oo. But E is closed, so x € E. On
the other hand, if x € E, then
0 < infp(x,y) < p(x,x) =0.
yeE

Then f(x) =0if and only if x € E. O

Let f: U — V be a continuously differentiable function between two nonempty open sets U,V C R".
Suppose that the Jacobian determinant of f is never zero on U, that f~!(K) is compact for any
compact set K C V, and that V is connected. Then f(U) =V

Proof: First I claim that f(U) is an open set in R” and hence an open set in the subspace topology
of V. Fix y = f(x) € f(U) where x € U. Since Vf(x) # 0, by the inverse function theorem, there
exist open neighborhoods U, C U of x and V,, C V of y such that f is 1-1 from Uy onto V) and f -1



is continuously differentiable on V;. That is V,, = f(Uy) is an open neighborhood of y contained
in f(U). Hence f(U) is open. Now I claim that f(U) is a closed set in the subspace topology
of V. Lety, € f(U) where y, — y as n — oo for some y € V. Define K = {y,},enU{y} C V.
Since y, — y, it follows that K is compact. There exist x, € f~!'(K) C U such that f(x,) = y,. By
assumption f~!(K) C U is also compact, so there exists a subsequence {x,, } C {x,} converging to
some ' € f~!1(K) C U as k — oo. Since f is continuous,
F) = lim £(3,) = lim v, = .

Therefore y € f(U), which proves that f(U) is closed in V. Then f(U) and V\ f(U) are open sets
in V. Moreover f(U)N(V\f(U)) =0 and f(U)U(V\f(U)) =V. Since V is connected, either
fU)=0o0rV\f(U)=0. Since U is nonempty, f(U) # 0. Therefore V\ f(U) = 0 and it follows
that V. C f(U). The oposite inclusion, f(U) C V, follows trivially since f : U — V. So we have that
Uy =Vv. 0



