Bonus Homework

Math 766 Spring 2012

1) For $E_1, E_2 \subset \mathbb{R}^n$, define

$$E_1 + E_2 = \{x + y : x \in E_1, y \in E_2\}.$$

(a) Prove that if E_1 and E_2 are compact, then $E_1 + E_2$ is compact.

Proof: Since $E_1 + E_2 \subset \mathbb{R}^n$, it is sufficient to prove that $E_1 + E_2$ is closed and bounded. $E_1 + E_2$ is bounded: Since E_1 and E_2 are compact, they are bounded. So there exists M > 0 such that |x| < M for all $x \in E_1$ and |y| < M for all $y \in E_2$. Then for $z \in E_1 + E_2$, there exist $x \in E_1$ and $y \in E_2$ such that z = x + y. So

$$|z| \le |x| + |y| < 2M.$$

Hence $E_1 + E_2$ is bounded.

<u> $E_1 + E_2$ is closed</u>: Let $\{z_n\} \subset E_1 + E_2$ such that $z_n \to z$ for some $z \in \mathbb{R}^n$. There exist $x_n \in E_1$ and $y_n \in E_2$ such that $z_n = x_n + y_n$ for each $n \in \mathbb{N}$. Since E_1 is compact and $\{x_n\} \subset E_1$, there exists a subsequence $\{x_{n_k}\} \subset \{x_n\}$ and $x \in E_1$ such that $x_{n_k} \to x$ as $k \to \infty$. Now since E_2 is compact and $\{y_{n_k}\} \subset E_2$, there exists a subsequence $\{y_{n_{k_\ell}}\} \subset \{y_k\}$ and $y \in E_2$ such that $y_{n_{k_\ell}} \to y$ as $\ell \to \infty$. Then take $z_{n_{k_\ell}} \subset \{z_n\}$ and since $z_n \to z$

$$z = \lim_{\ell \to \infty} z_{n_{k_{\ell}}} = \lim_{\ell \to \infty} x_{n_{k_{\ell}}} + y_{n_{k_{\ell}}}$$
$$= x + y.$$

But since $x \in E_1$ and $y \in E_2$, it follows that $z = x + y \in E_1 + E_2$. Therefore $E_1 + E_2$ is closed. Hence $E_1 + E_2$ is closed and bounded.

(b) There exists a closed set $E \subset \mathbb{R}$ such that $E + \mathbb{N}$ is not closed *Proof:* Define

$$E = \{a_n\}_{n \in \mathbb{N}}$$
 where $a_n = \frac{1}{n} - n$

For all $n \in \mathbb{N}$, $a_n > n_{n+1}$ and $a_n \to -\infty$ as $n \to \infty$. Then it follows that

$$E^c = (a_1, \infty) \cup \left[\bigcup_{n \in \mathbb{N}} (a_{n+1}, a_n) \right]$$

which is an open set. So E is closed. Now for each $n \in \mathbb{Z}$, we have $\frac{1}{n} \in E + \mathbb{N}$ since

$$\frac{1}{n} = \left(\frac{1}{n} - n\right) + n \in E + \mathbb{N}.$$

But $\frac{1}{n} \to 0$ as $n \to \infty$ and $0 \notin E + \mathbb{N}$. It can be seen that $0 \notin E + \mathbb{N}$ since for all $k, n \in \mathbb{N}$

$$k-n < \frac{1}{n}-n+k < k+1-n,$$

which implies that $E + \mathbb{N} \subset \mathbb{R} \setminus \mathbb{Z}$. Then $E + \mathbb{N}$ is not closed.

If ∑_{n=1}[∞] f_n converges pointwise to a continuous function f on [0,1] and every f_n is continuous and non-negative on [0,1], then ∑_{n=1}[∞] f_n converges uniformly to f on [0,1].
 Proof: Let ε > 0 and define for N ∈ N

$$K_N = K_N(\varepsilon) = \left\{ x : f(x) - \sum_{n=1}^N f(x) \ge \varepsilon \right\}.$$

For each $x \in [0, 1]$, since $f_n \ge 0$ for all $n \in \mathbb{N}$

$$f(x) = \sum_{n=1}^{\infty} f_n(x) \ge \sum_{n=1}^{N} f_n(x)$$

for every $N \in \mathbb{N}$. Since $\sum_{n=1}^{\infty} f_n = f$ pointwise on [0, 1], for each $x \in [0, 1]$ there exists $N_0 = N_0(x, \varepsilon) \in \mathbb{N}$ such that $N > N_0$ implies

$$f(x) - \sum_{n=1}^{N} f_n(x) = \left| f(x) - \sum_{n=1}^{N} f_n(x) \right| < \varepsilon.$$

That is for each $x \in [0,1]$, there exists $N_0 = N_0(x,\varepsilon)$ such that $x \notin K_{N_0}$. Then

$$\bigcap_{N\in\mathbb{N}}K_N=\emptyset.$$

Also $K_{N+1} \subset K_N$ for all $N \in \mathbb{N}$ since for any $x \in K_{N+1}$ we have

$$f(x) - \sum_{n=1}^{N} f_n(x) \ge f(x) - \sum_{n=1}^{N+1} f_n(x) \ge \varepsilon.$$

Since f_n and f are continuous, so is $f - \sum_{n=1}^N f_n(x)$, and so

$$K_N = \left\{ x : f(x) - \sum_{n=1}^N f(x) \ge \varepsilon \right\}$$

is a closed set. Also $K_N \subset [0, 1]$, so K_N is compact. Then K_N are a nested sequence of compact sets with empty intersection. Therefore by Cantor's intersection theorem, there exists $N_0 = N_0(\varepsilon) \in \mathbb{N}$ such that $K_{N_0} = \emptyset$. Then if $n > N_0$, then for all $x \in [0, 1]$

$$\left| f(x) - \sum_{n=1}^{N} f_n(x) \right| = f(x) - \sum_{n=1}^{N} f_n(x) < \varepsilon.$$

Hence $\sum_{n=1}^{N} f_n(x)$ converges uniformly to f on [0, 1].

3) Let $\psi \in C[0,1]$ and define for $f, g \in C[0,1]$

$$\rho_{\Psi}(f,g) = \int_0^1 \Psi(x) |f(x) - g(x)| dx.$$

- If $\psi(x) > 0$ for all $x \in [0, 1]$, then ρ_{ψ} is a metric on C[0, 1]
- If $\psi(x) = 0$ for $0 \le x \le 1/2$ and $\psi(x) = x 1/2$ for $1/2 < x \le 1$, then ρ_{ψ} is not a metric on C[0,1].

Proof: For any $f, g \in C[0,1]$, $\rho_{\Psi}(f,g)$ is well defines since $\Psi(x)|f(x) - g(x)|$ is a continuous and hence integrable function on [0,1]. Also

$$\rho_{\Psi}(f,g) = \int_0^1 \Psi(x) |f(x) - g(x)| dx = \int_0^1 \Psi(x) |g(x) - f(x)| dx = \rho_{\Psi}(g,f).$$

Now assume that $f \neq g$. Then there exists $x_0 \in [0,1]$ such that $f(x_0) \neq g(x_0)$. Since |f(x) - g(x)| is continuous at x_0 and $|f(x_0) - g(x_0)| > 0$, there exists $\delta > 0$ such that for all $x \in [0,1]$ such that $|x - x_0| < \delta$

$$||f(x) - g(x)| - |f(x_0) - g(x_0)|| < \frac{|f(x_0) - g(x_0)|}{2}$$

which implies that for $x \in [0, 1]$ such that $|x - x_0| < \delta$

$$|f(x) - g(x)| \ge \frac{|f(x_0) - g(x_0)|}{2}$$

Also since ψ is continuous with $\psi(x) > 0$, there exists $x_1 \in [x_0 - \delta, x_0 + \delta] \cap [0, 1]$ such that

$$\varepsilon = \inf_{x \in [x_0 - \delta, x_0 + \delta]} \Psi(x).$$

Without loss of generality assume that $x_0 \neq 1$. Then

$$\rho_{\Psi}(f,g) = \int_0^1 \Psi(x) |f(x) - g(x)| dx$$

$$\geq \int_{x_0}^{x_0 + \delta} \Psi(x) |f(x) - g(x)| dx$$

$$\geq \varepsilon \delta \frac{|f(x_0) - g(x_0)|}{2}.$$

A symmetric argument holds if $x_0 = 1$ using that $x_0 \neq 0$. On the other hand if f = g, then f(x) = g(x) for all $x \in [0, 1]$ and

$$\rho_{\Psi}(f,g) = \int_0^1 \Psi(x) |f(x) - g(x)| dx = 0.$$

So $\rho_{\Psi}(f,g) = 0$ if and only if f = g. Finally for $f, g, h \in C(0,1)$

$$\begin{split} \rho_{\Psi}(f,g) &= \int_0^1 \Psi(x) |f(x) - g(x)| dx \\ &\leq \int_0^1 \Psi(x) |f(x) - h(x)| dx + \int_0^1 \Psi(x) |h(x) - g(x)| dx \\ &= \rho_{\Psi}(f,h) + \rho_{\Psi}(h,g). \end{split}$$

So ρ_{Ψ} is a metric on C(0,1). If $\Psi(x) = 0$ for $0 \le x \le 1/2$ and $\Psi(x) = x - 1/2$ for $1/2 < x \le 1$, then to see that ρ_{Ψ} is not a metric define

$$f(x) = \begin{cases} x - \frac{1}{2} & x \in [0, \frac{1}{2}] \\ 0 & x \in (\frac{1}{2}, 1] \end{cases} \qquad g(x) = 0$$

which are both continuous on [0, 1]. But the we have that $f \neq g$ and

$$\rho_{\Psi}(f,g) = \int_{\frac{1}{2}}^{1} (x - \frac{1}{2}) |f(x) - g(x)| dx = 0.$$

So ρ_{Ψ} cannot be a metric.

4) Let (X, ρ) be a metric space and $E \subset X$ be closed. Then f defined

$$f(x) = \inf\{\rho(x, y) : y \in E\}$$

is continuous and f(x) = 0 if and only if $x \in E$. *Proof:* Let $x \in X$ and $\varepsilon > 0$. For any $z \in B_{\varepsilon/2}(x)$ and $y \in E$, by the triangle inequality we have

$$\rho(x,y) \le \rho(x,z) + \rho(z,y) < \frac{\varepsilon}{2} + \rho(z,y)$$

$$\rho(y,z) \le \rho(y,x) + \rho(x,z) < \rho(y,x) + \frac{\varepsilon}{2}$$

Then

$$f(x) = \inf_{y \in E} \rho(x, y) \le \rho(x, z) + \inf_{y \in E} \rho(z, y) \le \frac{\varepsilon}{2} + f(z) < \varepsilon + f(z)$$
$$f(z) = \inf_{y \in E} \rho(y, z) \le \inf_{y \in E} \rho(y, x) + \rho(x, z) \le f(x) + \frac{\varepsilon}{2} < f(x) + \varepsilon.$$

Hence $z \in B_{\varepsilon/2}$ implies that $|f(x) - f(z)| < \varepsilon$ and f is continuous on X. If f(x) = 0, then for all $n \in \mathbb{N}$ there exists $y_n \in E$ such that

$$\rho(x, y_n) < \inf_{y \in E} (x, y) + \frac{1}{n} = f(x) + \frac{1}{n} = \frac{1}{n}.$$

Then $\rho(x, y_n) \to 0$ as $n \to \infty$ which means that $y_n \to x$ in X as $n \to \infty$. But E is closed, so $x \in E$. On the other hand, if $x \in E$, then

$$0 \le \inf_{y \in E} \rho(x, y) \le \rho(x, x) = 0$$

Then f(x) = 0 if and only if $x \in E$.

5) Let $f: U \to V$ be a continuously differentiable function between two nonempty open sets $U, V \subset \mathbb{R}^n$. Suppose that the Jacobian determinant of f is never zero on U, that $f^{-1}(K)$ is compact for any compact set $K \subset V$, and that V is connected. Then f(U) = V

Proof: First I claim that f(U) is an open set in \mathbb{R}^n and hence an open set in the subspace topology of *V*. Fix $y = f(x) \in f(U)$ where $x \in U$. Since $\nabla f(x) \neq 0$, by the inverse function theorem, there exist open neighborhoods $U_x \subset U$ of *x* and $V_y \subset V$ of *y* such that *f* is 1-1 from U_x onto V_y and f^{-1}

is continuously differentiable on V_y . That is $V_y = f(U_x)$ is an open neighborhood of y contained in f(U). Hence f(U) is open. Now I claim that f(U) is a closed set in the subspace topology of V. Let $y_n \in f(U)$ where $y_n \to y$ as $n \to \infty$ for some $y \in V$. Define $K = \{y_n\}_{n \in \mathbb{N}} \cup \{y\} \subset V$. Since $y_n \to y$, it follows that K is compact. There exist $x_n \in f^{-1}(K) \subset U$ such that $f(x_n) = y_n$. By assumption $f^{-1}(K) \subset U$ is also compact, so there exists a subsequence $\{x_{n_k}\} \subset \{x_n\}$ converging to some $x' \in f^{-1}(K) \subset U$ as $k \to \infty$. Since f is continuous,

$$f(x') = \lim_{k \to \infty} f(x_{n_k}) = \lim_{n \to \infty} y_n = y.$$

Therefore $y \in f(U)$, which proves that f(U) is closed in *V*. Then f(U) and $V \setminus f(U)$ are open sets in *V*. Moreover $f(U) \cap (V \setminus f(U)) = \emptyset$ and $f(U) \cup (V \setminus f(U)) = V$. Since *V* is connected, either $f(U) = \emptyset$ or $V \setminus f(U) = \emptyset$. Since *U* is nonempty, $f(U) \neq \emptyset$. Therefore $V \setminus f(U) = \emptyset$ and it follows that $V \subset f(U)$. The oposite inclusion, $f(U) \subset V$, follows trivially since $f : U \to V$. So we have that f(U) = V.