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Spring 2012

1) For E1,E2 ⊂ Rn, define
E1 +E2 = {x+ y : x ∈ E1,y ∈ E2}.

(a) Prove that if E1 and E2 are compact, then E1 +E2 is compact.
Proof: Since E1 +E2 ⊂ Rn, it is sufficient to prove that E1 +E2 is closed and bounded.
E1 +E2 is bounded: Since E1 and E2 are compact, they are bounded. So there exists M > 0 such
that |x| < M for all x ∈ E1 and |y| < M for all y ∈ E2. Then for z ∈ E1 +E2, there exist x ∈ E1 and
y ∈ E2 such that z = x+ y. So

|z| ≤ |x|+ |y|< 2M.

Hence E1 +E2 is bounded.
E1 +E2 is closed: Let {zn} ⊂ E1 +E2 such that zn → z for some z ∈ Rn. There exist xn ∈ E1 and
yn ∈ E2 such that zn = xn + yn for each n ∈ N. Since E1 is compact and {xn} ⊂ E1, there exists a
subsequence {xnk} ⊂ {xn} and x ∈ E1 such that xnk → x as k→ ∞. Now since E2 is compact and
{ynk} ⊂ E2, there exists a subsequence {ynk`

} ⊂ {yk} and y ∈ E2 such that ynk`
→ y as `→ ∞. Then

take znk`
⊂ {zn} and since zn→ z

z = lim
`→∞

znk`
= lim

`→∞
xnk`

+ ynk`

= x+ y.

But since x ∈ E1 and y ∈ E2, it follows that z = x+ y ∈ E1 +E2. Therefore E1 +E2 is closed.
Hence E1 +E2 is closed and bounded. �

(b) There exists a closed set E ⊂ R such that E +N is not closed
Proof: Define

E = {an}n∈N where an =
1
n
−n

For all n ∈ N, an > nn+1 and an→−∞ as n→ ∞. Then it follows that

Ec = (a1,∞)∪

[⋃
n∈N

(an+1,an)

]

which is an open set. So E is closed. Now for each n ∈ Z, we have 1
n ∈ E +N since

1
n
=

(
1
n
−n
)
+n ∈ E +N.
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But 1
n → 0 as n→ ∞ and 0 6∈ E +N. It can be seen that 0 /∈ E +N since for all k,n ∈ N

k−n <
1
n
−n+ k < k+1−n,

which implies that E +N⊂ R\Z. Then E +N is not closed. �

2) If ∑
∞
n=1 fn converges pointwise to a continuous function f on [0,1] and every fn is continuous and

non-negative on [0,1], then ∑
∞
n=1 fn converges uniformly to f on [0,1].

Proof: Let ε > 0 and define for N ∈ N

KN = KN(ε) =

{
x : f (x)−

N

∑
n=1

f (x)≥ ε

}
.

For each x ∈ [0,1], since fn ≥ 0 for all n ∈ N

f (x) =
∞

∑
n=1

fn(x)≥
N

∑
n=1

fn(x)

for every N ∈N. Since ∑
∞
n=1 fn = f pointwise on [0,1], for each x∈ [0,1] there exists N0 =N0(x,ε)∈

N such that N > N0 implies

f (x)−
N

∑
n=1

fn(x) =

∣∣∣∣∣ f (x)− N

∑
n=1

fn(x)

∣∣∣∣∣< ε.

That is for each x ∈ [0,1], there exists N0 = N0(x,ε) such that x /∈ KN0 . Then⋂
N∈N

KN = /0.

Also KN+1 ⊂ KN for all N ∈ N since for any x ∈ KN+1 we have

f (x)−
N

∑
n=1

fn(x)≥ f (x)−
N+1

∑
n=1

fn(x)≥ ε.

Since fn and f are continuous, so is f −∑
N
n=1 fn(x), and so

KN =

{
x : f (x)−

N

∑
n=1

f (x)≥ ε

}
is a closed set. Also KN ⊂ [0,1], so KN is compact. Then KN are a nested sequence of compact sets
with empty intersection. Therefore by Cantor’s intersection theorem, there exists N0 = N0(ε) ∈ N
such that KN0 = /0. Then if n > N0, then for all x ∈ [0,1]∣∣∣∣∣ f (x)− N

∑
n=1

fn(x)

∣∣∣∣∣= f (x)−
N

∑
n=1

fn(x)< ε.

Hence ∑
N
n=1 fn(x) converges uniformly to f on [0,1]. �
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3) Let ψ ∈C[0,1] and define for f ,g ∈C[0,1]

ρψ( f ,g) =
∫ 1

0
ψ(x)| f (x)−g(x)|dx.

– If ψ(x)> 0 for all x ∈ [0,1], then ρψ is a metric on C[0,1]

– If ψ(x) = 0 for 0 ≤ x ≤ 1/2 and ψ(x) = x− 1/2 for 1/2 < x ≤ 1, then ρψ is not a metric on
C[0,1].

Proof: For any f ,g ∈ C[0,1], ρψ( f ,g) is well defines since ψ(x)| f (x)− g(x)| is a continuous and
hence integrable function on [0,1]. Also

ρψ( f ,g) =
∫ 1

0
ψ(x)| f (x)−g(x)|dx =

∫ 1

0
ψ(x)|g(x)− f (x)|dx = ρψ(g, f ).

Now assume that f 6= g. Then there exists x0 ∈ [0,1] such that f (x0) 6= g(x0). Since | f (x)− g(x)|
is continuous at x0 and | f (x0)− g(x0)| > 0, there exists δ > 0 such that for all x ∈ [0,1] such that
|x− x0|< δ ∣∣ | f (x)−g(x)|− | f (x0)−g(x0)|

∣∣< | f (x0)−g(x0)|
2

which implies that for x ∈ [0,1] such that |x− x0|< δ

| f (x)−g(x)| ≥ | f (x0)−g(x0)|
2

Also since ψ is continuous with ψ(x)> 0, there exists x1 ∈ [x0−δ,x0 +δ]∩ [0,1] such that

ε = inf
x∈[x0−δ,x0+δ]

ψ(x).

Without loss of generality assume that x0 6= 1. Then

ρψ( f ,g) =
∫ 1

0
ψ(x)| f (x)−g(x)|dx

≥
∫ x0+δ

x0

ψ(x)| f (x)−g(x)|dx

≥ εδ
| f (x0)−g(x0)|

2
.

A symmetric argument holds if x0 = 1 using that x0 6= 0. On the other hand if f = g, then f (x) = g(x)
for all x ∈ [0,1] and

ρψ( f ,g) =
∫ 1

0
ψ(x)| f (x)−g(x)|dx = 0.

So ρψ( f ,g) = 0 if and only if f = g. Finally for f ,g,h ∈C(0,1)

ρψ( f ,g) =
∫ 1

0
ψ(x)| f (x)−g(x)|dx

≤
∫ 1

0
ψ(x)| f (x)−h(x)|dx+

∫ 1

0
ψ(x)|h(x)−g(x)|dx

= ρψ( f ,h)+ρψ(h,g).
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So ρψ is a metric on C(0,1). If ψ(x) = 0 for 0≤ x≤ 1/2 and ψ(x) = x−1/2 for 1/2 < x≤ 1, then
to see that ρψ is not a metric define

f (x) =
{

x− 1
2 x ∈ [0, 1

2 ]

0 x ∈ (1
2 ,1]

g(x) = 0

which are both continuous on [0,1]. But the we have that f 6= g and

ρψ( f ,g) =
∫ 1

1
2

(x− 1
2
)| f (x)−g(x)|dx = 0.

So ρψ cannot be a metric. �

4) Let (X ,ρ) be a metric space and E ⊂ X be closed. Then f defined

f (x) = inf{ρ(x,y) : y ∈ E}

is continuous and f (x) = 0 if and only if x ∈ E.
Proof: Let x ∈ X and ε > 0. For any z ∈ Bε/2(x) and y ∈ E, by the triangle inequality we have

ρ(x,y)≤ ρ(x,z)+ρ(z,y)<
ε

2
+ρ(z,y)

ρ(y,z)≤ ρ(y,x)+ρ(x,z)< ρ(y,x)+
ε

2
.

Then

f (x) = inf
y∈E

ρ(x,y)≤ ρ(x,z)+ inf
y∈E

ρ(z,y)≤ ε

2
+ f (z)< ε+ f (z)

f (z) = inf
y∈E

ρ(y,z)≤ inf
y∈E

ρ(y,x)+ρ(x,z)≤ f (x)+
ε

2
< f (x)+ ε.

Hence z ∈ Bε/2 implies that | f (x)− f (z)| < ε and f is continuous on X . If f (x) = 0, then for all
n ∈ N there exists yn ∈ E such that

ρ(x,yn)< inf
y∈E

(x,y)+
1
n
= f (x)+

1
n
=

1
n
.

Then ρ(x,yn)→ 0 as n→ ∞ which means that yn→ x in X as n→ ∞. But E is closed, so x ∈ E. On
the other hand, if x ∈ E, then

0≤ inf
y∈E

ρ(x,y)≤ ρ(x,x) = 0.

Then f (x) = 0 if and only if x ∈ E. �

5) Let f : U→V be a continuously differentiable function between two nonempty open sets U,V ⊂Rn.
Suppose that the Jacobian determinant of f is never zero on U , that f−1(K) is compact for any
compact set K ⊂V , and that V is connected. Then f (U) =V
Proof: First I claim that f (U) is an open set in Rn and hence an open set in the subspace topology
of V . Fix y = f (x) ∈ f (U) where x ∈U . Since ∇ f (x) 6= 0, by the inverse function theorem, there
exist open neighborhoods Ux ⊂U of x and Vy ⊂ V of y such that f is 1-1 from Ux onto Vy and f−1
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is continuously differentiable on Vy. That is Vy = f (Ux) is an open neighborhood of y contained
in f (U). Hence f (U) is open. Now I claim that f (U) is a closed set in the subspace topology
of V . Let yn ∈ f (U) where yn → y as n→ ∞ for some y ∈ V . Define K = {yn}n∈N ∪ {y} ⊂ V .
Since yn→ y, it follows that K is compact. There exist xn ∈ f−1(K) ⊂U such that f (xn) = yn. By
assumption f−1(K)⊂U is also compact, so there exists a subsequence {xnk} ⊂ {xn} converging to
some x′ ∈ f−1(K)⊂U as k→ ∞. Since f is continuous,

f (x′) = lim
k→∞

f (xnk) = lim
n→∞

yn = y.

Therefore y ∈ f (U), which proves that f (U) is closed in V . Then f (U) and V\ f (U) are open sets
in V . Moreover f (U)∩ (V\ f (U)) = /0 and f (U)∪ (V\ f (U)) = V . Since V is connected, either
f (U) = /0 or V\ f (U) = /0. Since U is nonempty, f (U) 6= /0. Therefore V\ f (U) = /0 and it follows
that V ⊂ f (U). The oposite inclusion, f (U)⊂V , follows trivially since f : U →V . So we have that
f (U) =V . �


