Homework 1

Math 766
Spring 2012
7.1.3 Suppose that for each $n \in \mathbb{N}, f_{n}: E \rightarrow \mathbb{R}$ is bounded. If $f_{n} \rightarrow f$ uniformly on E as $n \rightarrow \infty$, then $\left\{f_{n}\right\}$ is uniformly bounded on E and f is a bounded function on E.
Proof: For each $n \in \mathbb{N}$, there exists $M_{n}>0$ such that $\left|f_{n}(x)\right| \leq M_{n}$ for all $x \in E$. Since $f_{n} \rightarrow f$ uniformly, there exists $N \in \mathbb{N}$ such that

$$
n, m \geq N \Longrightarrow\left|f_{n}(x)-f_{m}(x)\right|<1 \text { for all } x \in E
$$

Define $M=\max \left(M_{1}, M_{2}, \ldots, M_{N}\right)+1$. Then for any $n \in \mathbb{N}$ and any $x \in E$, it follows that $\left|f_{n}(x)\right| \leq M$ since

$$
\begin{aligned}
& n>N \Longrightarrow\left|f_{n}(x)\right| \leq\left|f_{N}(x)\right|+\left|f_{n}(x)-f_{N}(x)\right| \leq M_{N}+1 \leq M \\
& n \leq N \Longrightarrow\left|f_{n}(x)\right| \leq M_{n} \leq M .
\end{aligned}
$$

Therefore f_{n} is uniformly bounded. Since $f_{n} \rightarrow f$ uniformly on E, there exists $N \in \mathbb{N}$ such that

$$
n \geq N \Longrightarrow\left|f_{n}(x)-f(x)\right|<1 \text { for all } x \in E .
$$

Then for all $x \in E$

$$
|f(x)| \leq\left|f_{N}(x)\right|+\left|f(x)-f_{N}(x)\right| \leq M_{N}+1
$$

Therefore f is bounded on E as well.
7.1.5 Suppose $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ uniformly on $E \subset \mathbb{R}$ as $n \rightarrow \infty$.
c) If f and g are bounded on E, then $f_{n} g_{n} \rightarrow f g$ uniformly on E.

Proof: Let $\varepsilon>0$ since f, g are bounded on E, let $M>0$ such that $|f(x)| \leq M$ and $|g(x)| \leq M$ for all $x \in E$. There exists $N \in \mathbb{N}$ such that

$$
\begin{aligned}
& n \geq N \Longrightarrow\left|f_{n}(x)-f(x)\right|<\varepsilon \text { for all } x \in E \\
& n \geq N \Longrightarrow\left|g_{n}(x)-g(x)\right|<\varepsilon \text { for all } x \in E .
\end{aligned}
$$

This implies also that for $n \geq N$ and $x \in E$

$$
\left|f_{n}(x)\right| \leq|f(x)|+\left|f(x)-f_{n}(x)\right| \leq M+\varepsilon
$$

Then for all $x \in E$ and for any $n \geq N$

$$
\begin{aligned}
\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right| & \leq\left|f_{n}(x) g_{n}(x)-f_{n}(x) g(x)\right|+\left|f_{n}(x) g(x)-f(x) g(x)\right| \\
& =\left|f_{n}(x)\right|\left|g_{n}(x)-g(x)\right|+\left|f_{n}(x)-f(x)\right||g(x)| \\
& =(M+\varepsilon) \varepsilon+\varepsilon M \\
& =(2 M+\varepsilon) \varepsilon .
\end{aligned}
$$

Therefore $f_{n} g_{n} \rightarrow f g$ uniformly on E as $n \rightarrow \infty$.

