Homework 2

Math 766 Spring 2012

7.2.3 Let $E(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$

a) Prove that the series defining E(x) converges uniformly on any closed interval [a,b]. *Proof:* Let $[a,b] \subset \mathbb{R}$ be a closed interval and define $M = \max(|a|,|b|)$. Then $\frac{|x|^k}{k!} \leq \frac{M}{k!}$ and

$$\sum_{k=0}^{\infty} \frac{M}{k!}$$

converges by the ratio test since

$$\lim_{k \to \infty} \frac{M/(k+1)!}{M/k!} = \lim_{k \to \infty} \frac{1}{k+1} = 0.$$

Then by the Weirstrass *M*-test, $\sum_{k=0}^{\infty}$ converges absolutely and uniformly on [a, b]. **b)** Prove that

$$\int_{a}^{b} E(x)dx = E(b) - E(a)$$

for all $a, b \in \mathbb{R}$. *Proof:* Let $a, b \in \mathbb{R}$. By part **a**), the series defining *E* converges uniformly on $[\min(a,b), \max(a,b)]$. Also $x^k/k!$ is continuous on $[\min(a,b), \max(a,b)]$ and hence integrable on $[\min(a,b), \max(a,b)]$. Then integrating term by term is permissible, so by the fundamental theorem of calculus

$$\int_{a}^{b} E(x)dx = \sum_{k=0}^{\infty} \int_{a}^{b} \frac{x^{k}}{k!}dx$$

$$= \sum_{k=0}^{\infty} \left(\frac{b^{k+1}}{(k+1)!} - \frac{a^{k+1}}{(k+1)!}\right)$$

$$= \sum_{k=0}^{\infty} \frac{b^{k+1}}{(k+1)!} - \sum_{k=0}^{\infty} \frac{a^{k+1}}{(k+1)!} \qquad \text{(since both sums converge)}$$

$$= 1 + \sum_{k=1}^{\infty} \frac{b^{k}}{k!} - \left(1 + \sum_{k=1}^{\infty} \frac{a^{k+1}}{k!}\right)$$

$$= \sum_{k=0}^{\infty} \frac{b^{k}}{k!} - \sum_{k=0}^{\infty} \frac{a^{k}}{k!}$$

$$= E(b) - E(a).$$

Note that we can split the limits in the third equality since both of these limits exist.

$$y' - y = 0,$$
 $y(0) = 1.$

Proof: Fix $x \in \mathbb{R}$ and take R > |x|. Consider

$$\sum_{k=0}^{\infty} \frac{d}{dx} \frac{x^k}{k!} = 0 + \sum_{k=1}^{\infty} k \frac{x^{k-1}}{k!} = \sum_{k=0}^{\infty} \frac{x^k}{k!}.$$

This series converges uniformly on (-R,R) by part (a). Also by part (a) the series defining E(0) converges

$$E(0) = \sum_{k=0}^{\infty} \frac{0^k}{k!} = 1.$$

Therefore one may differentiate term by term to compute

$$y'(x) = \frac{d}{dx} \sum_{k=0}^{\infty} \frac{x^k}{k!} = \sum_{k=0}^{\infty} \frac{d}{dx} \frac{x^k}{k!} = \sum_{k=0}^{\infty} k \frac{x^{k-1}}{(k-1)!} \sum_{k=0}^{\infty} \frac{x^k}{k!} = E(x) = y.$$

Then y = E(x) satisfies the initial value problem: y' - y = 0; y(0) = 1.