Homework 3

Math 766 Spring 2012

7.3.2 Find the interval of convergence of the following power series.

b) $\sum_{k=0}^{\infty} ((-1)^k + 3)^k (x-1)^k$.

Solution: First compute the radius of convergence for this power series

$$R = \frac{1}{\limsup_{k \to \infty} (-1)^k + 3} = \frac{1}{4}$$

So the power series converges on $(\frac{3}{4}, \frac{5}{4})$, and it only remains to test the endpoints, $\frac{3}{4}$ and $\frac{5}{4}$. Computing the terms of the series at the endpoint $\frac{3}{4}$,

$$((-1)^k + 3)^k \left(\frac{3}{4} - 1\right)^k = \frac{(-1)^{k+1} - 3}{4}.$$

This sequence does not tend to 0 as $k \to \infty$, so the power series above does not converge at $x = \frac{3}{4}$. Similarly for the endpoint $x = \frac{5}{4}$, the terms of the series are

$$((-1)^k + 3)^k \left(\frac{5}{4} - 1\right)^k = \frac{(-1)^k + 3}{4}$$

which again does not tend to 0 as $k \to \infty$. Then the power series does not converge at $x = \frac{5}{4}$ either. Therefore the interval of convergence is $(\frac{3}{4}, \frac{5}{4})$.

7.3.6 a) Prove that if $\sum_{k=0}^{\infty} a_k$ converges to *L*, then $\sum_{k=0}^{\infty} a_k$ is Able summable to *L*.

Proof: Since $\sum_{k=0}^{\infty} a_k$ converges, $a_k \to 0$ as $k \to \infty$ and hence a_k is bounded. Therefore the power series $f(x) := \sum_{k=0}^{\infty} a_k x^k$ converges absolutely for $x \in (-1, 1)$. Since $\sum_{k=0}^{\infty} a_k = L$, the power series defining f(x) converges on (-1, 1]. Then by Abel's Theorem, f is continuous on [0, 1]. Therefore

$$\lim_{r \to 1^{-}} \sum_{k=0}^{\infty} a_k r^k = \lim_{r \to 1^{-}} f(r) = f(1) = \sum_{k=0}^{\infty} a_k = L$$

Then $\sum_{k=0}^{\infty} a_k$ is Abel summable to *L*.

b) Find the Abel sum of $\sum_{k=0}^{\infty} (-1)^k$. *Solution:* Using the convergence of geometric series, compute

$$\lim_{r \to 1^{-}} \sum_{k=0}^{\infty} (-1)^{k} r^{k} = \lim_{r \to 1^{-}} \sum_{k=0}^{\infty} (-r)^{k}$$
$$= \lim_{r \to 1^{-}} \frac{1}{1+r}$$
$$= \frac{1}{2}.$$