Homework 6

Math 766
Spring 2012
10.4.2 Let A and B be compact subsets of X. Prove that $A \cup B$ and $A \cap B$ are compact. Proof: Let $\mathcal{U}=\left\{u_{\alpha}\right\}_{\alpha \in \Lambda}$ be an open cover of $A \cup B$. Then \mathcal{U} is also an open cover of A and B since

$$
\begin{aligned}
& A \subset A \cup B \subset \bigcup_{\alpha \in \Lambda} U_{\alpha} \\
& B \subset A \cup B \subset \bigcup_{\alpha \in \Lambda} U_{\alpha} .
\end{aligned}
$$

Since A and B are compact, there exist finite subcovers $\left\{U_{1}, \ldots, U_{n}\right\} \subset\left\{U_{\alpha}\right\}_{\alpha \in \Lambda}$ and $\left\{U_{n+1}, \ldots, U_{N}\right\} \subset$ $\left\{U_{\alpha}\right\}_{\alpha \in \Lambda}$ of A and B respectively. That is

$$
A \subset \bigcup_{j=1}^{n} U_{j} \quad B \subset \bigcup_{j=n+1}^{N} U_{j}
$$

Then it follows that the finite collection $\left\{U_{1}, U_{2}, \ldots, U_{N}\right\} \subset\left\{U_{\alpha}\right\}_{\alpha \in \Lambda}$, is in fact an open cover of $A \cup B$,

$$
A \cup B \subset \bigcup_{j=1}^{n} U_{j} \cup \bigcup_{j=n+1}^{N} U_{j}=\bigcup_{j=1}^{N} U_{j}
$$

Therefore $A \cup B$ is compact.
Now we prove that $A \cap B$ is compact. Since A and B are compact, they are closed. Then $A \cap B$ is closed as well. But then $A \cap B \subset A$ is a closed subset of the compact set A, and hence is a compact set.
10.4.8 a) If H_{1}, H_{2}, \ldots is a nested sequence of nonempty compact sets in X, then

$$
\bigcap_{k=1}^{\infty} H_{k} \neq \emptyset .
$$

Proof: For a contradiction, assume that

$$
\bigcap_{k=1}^{\infty} H_{k}=\emptyset .
$$

Then it follows that $\left\{U_{k}=X \backslash H_{k}\right\}$ is an open cover of X, and in particular an open cover of H_{1}. Then there exist $\left\{U_{1}, \ldots, U_{N}\right\}$ such that

$$
H_{1} \subset \bigcup_{j=1}^{N} U_{j}=\bigcup_{j=1}^{N} X \backslash H_{j}=X \backslash \bigcap_{j=1}^{N} H_{j}=X \backslash H_{N}
$$

On the other, recall that $H_{1} \supset H_{N}$, so

$$
H_{N} \subset H_{1} \subset X \backslash H_{N} .
$$

But this implies that $H_{N}=\emptyset$, which is a contradiction. Therefore

$$
\bigcap_{k=1}^{\infty} H_{k} \neq \emptyset .
$$

b) Prove that $(\sqrt{2}, \sqrt{3}) \cap \mathbb{Q}$ is closed and bounded but not compact in the metric space \mathbb{Q} introduced in Example 10.5.
Proof: We show that $(\sqrt{2}, \sqrt{3}) \cap \mathbb{Q}$ is closed by showing that its complement in $\mathbb{Q}, \mathbb{Q} \backslash(\sqrt{2}, \sqrt{3})$, is open. So let $x \in \mathbb{Q} \backslash(\sqrt{2}, \sqrt{3})$. Then $x \notin(\sqrt{2}, \sqrt{3})$ and since $x \in \mathbb{Q}$ we can even say that $x \notin[\sqrt{2}, \sqrt{3}]$. Let $\varepsilon=\min (|x-\sqrt{2}|,|x-\sqrt{3}|)$ which is larger than 0 . It also follows that $(x-\varepsilon, x+\varepsilon) \cap \mathbb{Q} \subset \mathbb{Q} \backslash(\sqrt{2}, \sqrt{3})$ and that $\mathbb{Q} \backslash(\sqrt{2}, \sqrt{3})$ is open. Then $(\sqrt{2}, \sqrt{3}) \cap \mathbb{Q}$ is closed. It is clear that $(\sqrt{2}, \sqrt{3}) \cap \mathbb{Q}$ is bounded, for example we may take $(\sqrt{2}, \sqrt{3}) \cap \mathbb{Q} B(0, \sqrt{3})$. To see that $(\sqrt{2}, \sqrt{3}) \cap \mathbb{Q}$ is not compact, consider the collection $U_{n}=(\sqrt{2}+1 / n, \sqrt{3}) \cap \mathbb{Q}$. For each $x \in U_{n},(x-\varepsilon, x+\varepsilon) \cap \mathbb{Q} \subset U_{n}$ where $\varepsilon=\min (|\sqrt{2}+1 / n-x|,|x-\sqrt{3}|)$. So U_{n} is open for each $n \in \mathbb{N}$. For each $x \in(\sqrt{2}, \sqrt{3}) \cap \mathbb{Q}, x-\sqrt{2}>0$. So there exists $N \in \mathbb{N}$ such t hat $\frac{1}{N}<x-\sqrt{2}$. Therefore $x \in(\sqrt{2}+1 / N, \sqrt{3}) \cap \mathbb{Q}$. Therefore

$$
(\sqrt{2}, \sqrt{3}) \cap \mathbb{Q} \subset \bigcup_{n=1}^{\infty} U_{n} .
$$

If $(\sqrt{2}, \sqrt{3}) \cap \mathbb{Q}$ is compact, then there exists a finite subcover

$$
(\sqrt{2}, \sqrt{3}) \cap \mathbb{Q} \subset \bigcup_{n=1}^{N} U_{n}
$$

By by the density of the rational numbers, there exists $x \in(\sqrt{2}, \sqrt{3}) \cap \mathbb{Q}$ such that $x-\sqrt{2}<\frac{1}{N}$. Therefore $x \notin(\sqrt{2}+1 / N, \sqrt{3})=U_{N}$. Note that $U_{k+1} \supset U_{k}$ for all $k \in \mathbb{N}$ and we have that $x \notin U_{n}$ for any $n \leq N$. But this contradicts that $\left\{U_{1}, \ldots, U_{N}\right\}$ is an open cover of $(\sqrt{2}, \sqrt{3}) \cap \mathbb{Q}$. Therefore $(\sqrt{2}, \sqrt{3}) \cap \mathbb{Q}$ is not compact.
c) Show that Cantor's Intersection Theorem does not hold in an arbitrary metric space if compact is replaced with closed and bounded.
Proof: Define

$$
H_{k}=(\sqrt{2}, \sqrt{2}+1 / k) \cap \mathbb{Q} .
$$

Applying the argument from part \mathbf{a}), H_{k} is closed and bounded for each k. Now for a contradiction, assume that

$$
x \in \bigcap_{k=1}^{\infty} H_{k} .
$$

Then for all $k \in \mathbb{N}$

$$
\sqrt{2}<x<\sqrt{2}+\frac{1}{k} .
$$

Then by the squeeze theorem, $x=\sqrt{2} \notin(\sqrt{2}, \sqrt{2}+1)=H_{1}$, which is a contradiction. Therefore

$$
\bigcap_{k=1}^{\infty} H_{k}=\emptyset
$$

and Cantor's Intersection Theorem does not hold if we replace compact with closed and bounded.

