Homework 7

Math 766 Spring 2012

10.6.6 Suppose that *H* is a nonempty compact subset of *X* and that *Y* is a Euclidean space.

a) If $f: H \to Y$ is continuous, prove that

$$||f||_{H} := \sup_{x \in H} ||f(x)||_{Y}$$

is finite and there exists $x_0 \in H$ such that $||f(x_0)||_Y = ||f||_H$.

Proof: Since *f* is continuous on a compact set *H*, *f* is uniformly continuous on *H*. Fix $\varepsilon > 0$, and there exists $\delta > 0$ such that $d_H(x,y) < \delta$ implies that $d_Y(f(x), f(y)) < \varepsilon$. Since *Y* is a Euclidean space $d_Y(y_1, y_2) = ||y_1 - y_2||_Y$ where $|| \cdot ||_Y$ is a Euclidean norm. Consider the function $g : H \to \mathbb{R}$ defined $g(x) = ||f(x)||_Y$. Then for $d_H(x,y) < \delta$

$$|g(x) - g(y)| = |||f(x)||_{Y} - ||f(y)||_{Y}| \le ||f(x) - f(y)||_{Y} = d_{Y}(f(x), f(y)) < \varepsilon.$$

Therefore $g: H \to \mathbb{R}$ is continuous, and by the extreme value theorem

$$||f||_H = \sup_{x \in H} g(x)$$

is finite and there exists $x_0 \in H$ such that $||f||_H = f(x_0)$.

10.6.8 Suppose $E \subset X$ and that $f : E \to Y$.

a) If *f* is uniformly continuous on *E* and $x_n \in E$ is Cauchy in *X*, prove that $f(x_n)$ is Cauchy in *Y*. *Proof:* Let $\varepsilon > 0$ be arbitrary. Since $f : E \to Y$ is uniformly continuous, there exists $\delta > 0$ such that

$$d_x(x_1,x_2) < \delta, \ x_1,x_2 \in E \Longrightarrow d_y(f(x_1),f(x_2)) < \varepsilon$$

where d_X and d_Y be the metric on X and Y respectively. Since $x_n \in X$ is Cauchy, there exists $N \in \mathbb{N}$ such that

$$m,n>N \Longrightarrow d_X(x_m,x_n) < \delta.$$

Then for m, n > N it follows that

 $d_Y(f(x_m,x_n))<\varepsilon.$

Therefore $f(x_n)$ is Cauchy in Y.

b) Suppose that *D* is a dense subspace of *X*. If *Y* is complete and $f : D \to Y$ is uniformly continuous on *D*, prove that *f* has a continuous extension to *X*.

Proof: Fix $x \in X$, and there exists $x_n \in D$ such that $x_n \to x$. Since x_n is convergent in X, it follows that x_n is Cauchy in X. By part **a**) it follows that $f(x_n)$ is Cauchy in Y. Since Y is complete, there exists $y_x \in Y$ such that $f(x_n) \to y_x$ in Y. So given $x \in X$, define $g(x) = y_x$. By the uniqueness of limits, $g: X \to Y$ is well-defined.

 $g|_D = f$: For $x \in D$, take $x_n = x$ for all n. Then $x_n \to x$ in X and hence

$$g(x) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(x) = f(x).$$

Therefore g(x) = f(x) for all $x \in D$.

<u>*g* is continuous</u>: Let $\varepsilon > 0$ and $x_0 \in X$. Since *f* is uniformly continuous on *D*, there exists $\delta > 0$ such that

$$d_X(x,y) < \delta, \ x,y \in D \Longrightarrow d_Y(f(x),f(y)) < \varepsilon.$$

Fix $x \in X$ such that $d_X(x_0, x) < \delta/3$. There exist $x_n^0, x_n \in D$ such that $x_n^0 \to x_0$ and $x_n \to x$ in X. Then there exists $N \in \mathbb{N}$ such that $n \ge N_1$ implies that $d_X(x_n^0, x_0) < \delta/3$ and $d_X(x_n, x) < \delta/3$. Then for $n \ge N_1$

$$d_X(x_n^0, x_n) \le d_X(x_n^0, x_0) + d_X(x_0, x) + d_X(x, x_n) < \delta$$

By the definition of g, we have $f(x_n^0) \to g(x_0)$ and $f(x_n) \to g(x)$ in X. So there exists N_2 such that $n \ge N_2$ implies that $d_Y(g(x_0), f(x_n^0)) < \varepsilon$ and $d_Y(g(x), f(x_n)) < \varepsilon$. Now fix $n_0 > \max(N_1, N_2)$, and it follows that

$$d_Y(g(x_0), g(x)) \le d_Y(g(x_0), g(x_n^0)) + d_Y(g(x_n^0), g(x_n)) + d_Y(g(x_n), g(x)) = d_Y(g(x_0), f(x_n^0)) + d_Y(f(x_n^0), f(x_n)) + d_Y(f(x_n), g(x)) \le 3\varepsilon.$$

Therefore g is continuous on X.