Homework 7

Math 766
Spring 2012
10.6.6 Suppose that H is a nonempty compact subset of X and that Y is a Euclidean space.
a) If $f: H \rightarrow Y$ is continuous, prove that

$$
\|f\|_{H}:=\sup _{x \in H}\|f(x)\|_{Y}
$$

is finite and there exists $x_{0} \in H$ such that $\left\|f\left(x_{0}\right)\right\|_{Y}=\|f\|_{H}$.
Proof: Since f is continuous on a compact set H, f is uniformly continuous on H. Fix $\varepsilon>0$, and there exists $\delta>0$ such that $d_{H}(x, y)<\delta$ implies that $d_{Y}(f(x), f(y))<\varepsilon$. Since Y is a Euclidean space $d_{Y}\left(y_{1}, y_{2}\right)=\left\|y_{1}-y_{2}\right\|_{Y}$ where $\|\cdot\|_{Y}$ is a Euclidean norm. Consider the function $g: H \rightarrow \mathbb{R}$ defined $g(x)=\|f(x)\|_{Y}$. Then for $d_{H}(x, y)<\delta$

$$
|g(x)-g(y)|=\left|\|f(x)\|_{Y}-\|f(y)\|_{Y}\right| \leq\|f(x)-f(y)\|_{Y}=d_{Y}(f(x), f(y))<\varepsilon
$$

Therefore $g: H \rightarrow \mathbb{R}$ is continuous, and by the extreme value theorem

$$
\|f\|_{H}=\sup _{x \in H} g(x)
$$

is finite and there exists $x_{0} \in H$ such that $\|f\|_{H}=f\left(x_{0}\right)$.
10.6.8 Suppose $E \subset X$ and that $f: E \rightarrow Y$.
a) If f is uniformly continuous on E and $x_{n} \in E$ is Cauchy in X, prove that $f\left(x_{n}\right)$ is Cauchy in Y.

Proof: Let $\varepsilon>0$ be arbitrary. Since $f: E \rightarrow Y$ is uniformly continuous, there exists $\delta>0$ such that

$$
d_{x}\left(x_{1}, x_{2}\right)<\delta, x_{1}, x_{2} \in E \Longrightarrow d_{y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)<\varepsilon
$$

where d_{X} and d_{Y} be the metric on X and Y respectively. Since $x_{n} \in X$ is Cauchy, there exists $N \in \mathbb{N}$ such that

$$
m, n>N \Longrightarrow d_{X}\left(x_{m}, x_{n}\right)<\delta
$$

Then for $m, n>N$ it follows that

$$
d_{Y}\left(f\left(x_{m}, x_{n}\right)\right)<\varepsilon .
$$

Therefore $f\left(x_{n}\right)$ is Cauchy in Y.
b) Suppose that D is a dense subspace of X. If Y is complete and $f: D \rightarrow Y$ is uniformly continuous on D, prove that f has a continuous extension to X.
Proof: Fix $x \in X$, and there exists $x_{n} \in D$ such that $x_{n} \rightarrow x$. Since x_{n} is convergent in X, it follows that x_{n} is Cauchy in X. By part a) it follows that $f\left(x_{n}\right)$ is Cauchy in Y. Since Y is complete, there exists $y_{x} \in Y$ such that $f\left(x_{n}\right) \rightarrow y_{x}$ in Y. So given $x \in X$, define $g(x)=y_{x}$. By the uniqueness of limits, $g: X \rightarrow Y$ is well-defined.
$\underline{\left.g\right|_{D}=f}:$ For $x \in D$, take $x_{n}=x$ for all n. Then $x_{n} \rightarrow x$ in X and hence

$$
g(x)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} f(x)=f(x) .
$$

Therefore $g(x)=f(x)$ for all $x \in D$.
g is continuous: Let $\varepsilon>0$ and $x_{0} \in X$. Since f is uniformly continuous on D, there exists $\delta>0$ such that

$$
d_{X}(x, y)<\delta, x, y \in D \Longrightarrow d_{Y}(f(x), f(y))<\varepsilon
$$

Fix $x \in X$ such that $d_{X}\left(x_{0}, x\right)<\delta / 3$. There exist $x_{n}^{0}, x_{n} \in D$ such that $x_{n}^{0} \rightarrow x_{0}$ and $x_{n} \rightarrow x$ in X. Then there exists $N \in \mathbb{N}$ such that $n \geq N_{1}$ implies that $d_{X}\left(x_{n}^{0}, x_{0}\right)<\delta / 3$ and $d_{X}\left(x_{n}, x\right)<\delta / 3$. Then for $n \geq N_{1}$

$$
d_{X}\left(x_{n}^{0}, x_{n}\right) \leq d_{X}\left(x_{n}^{0}, x_{0}\right)+d_{X}\left(x_{0}, x\right)+d_{X}\left(x, x_{n}\right)<\delta .
$$

By the definition of g, we have $f\left(x_{n}^{0}\right) \rightarrow g\left(x_{0}\right)$ and $f\left(x_{n}\right) \rightarrow g(x)$ in X. So there exists N_{2} such that $n \geq N_{2}$ implies that $d_{Y}\left(g\left(x_{0}\right), f\left(x_{n}^{0}\right)\right)<\varepsilon$ and $d_{Y}\left(g(x), f\left(x_{n}\right)\right)<\varepsilon$. Now fix $n_{0}>\max \left(N_{1}, N_{2}\right)$, and it follows that

$$
\begin{aligned}
d_{Y}\left(g\left(x_{0}\right), g(x)\right) & \leq d_{Y}\left(g\left(x_{0}\right), g\left(x_{n}^{0}\right)\right)+d_{Y}\left(g\left(x_{n}^{0}\right), g\left(x_{n}\right)\right)+d_{Y}\left(g\left(x_{n}\right), g(x)\right) \\
& =d_{Y}\left(g\left(x_{0}\right), f\left(x_{n}^{0}\right)\right)+d_{Y}\left(f\left(x_{n}^{0}\right), f\left(x_{n}\right)\right)+d_{Y}\left(f\left(x_{n}\right), g(x)\right) \\
& \leq 3 \varepsilon .
\end{aligned}
$$

Therefore g is continuous on X.

