Bonus work (worth 20 points)

1) For E_{1} and E_{2}, two sets in \mathbb{R}^{n}, define

$$
E_{1}+E_{2}=\left\{x+y: x \in E_{1}, y \in E_{2}\right\}
$$

a) Prove that if E_{1} and E_{2} are compact then $E_{1}+E_{2}$ is also compact.
b) Give an example of a closed set E in \mathbf{R} such that $E+\mathbb{N}$ is not closed (here \mathbb{N} is the set of natural numbers).
2) Show that if $\sum_{n=1}^{\infty} f_{n}$ converges pointwise to a continuous function f on $[0,1]$ and every f_{n} is continuous and non-negative on $[0,1]$, then $\sum_{n=1}^{\infty} f_{n}$ converges uniformly to f.
(Hint: For $\epsilon>0$, consider the sets $K_{N}=\left\{x: f(x)-\sum_{n=1}^{N} f_{n}(x) \geq \epsilon\right\}$, and show that their intersection has to be empty. Then use some properties of compact sets.)
3) Let $C[0,1]$ be the set of all real-valued continuous functions on $[0,1]$. Let $\psi \in C[0,1]$ and define

$$
\rho_{\psi}(f, g)=\int_{0}^{1} \psi(x)|f(x)-g(x)| d x
$$

a) Show that if $\psi(x)>0$ for all $x \in[0,1]$, then ρ_{ψ} is a metric in $C[0,1]$.
b) Show that if $\psi(x)=0$ for $0 \leq x \leq 1 / 2$ and $\psi(x)=x-1 / 2$ for $1 / 2 \leq x \leq 1$, then ρ_{ψ} is not a metric in $C[0,1]$.
4) Let X be a metric space with metric ρ, and let E be a closed subset of X. Show that the function $f: X \rightarrow[0, \infty)$ defined by

$$
f(x)=\inf \{\rho(x, y): y \in E\}
$$

is continuous, and that $f(x)=0$ if an only if $x \in E$.
5) Let $f: U \rightarrow V$ be a continuously differentiable function between two open sets in \mathbb{R}^{n}. Suppose that the Jacobian determinant of f is never zero on U, that $f^{-1}(K)$ is compact for any compact set $K \subset V$, and that V is connected. Show that $f(U)=V$.

