1) For E_1 and E_2 , two sets in \mathbb{R}^n , define

$$E_1 + E_2 = \{x + y : x \in E_1, y \in E_2\}.$$

a) Prove that if E_1 and E_2 are compact then $E_1 + E_2$ is also compact.

b) Give an example of a closed set E in **R** such that $E + \mathbb{N}$ is not closed (here \mathbb{N} is the set of natural numbers).

2) Show that if ∑_{n=1}[∞] f_n converges pointwise to a continuous function f on [0, 1] and every f_n is continuous and non-negative on [0, 1], then ∑_{n=1}[∞] f_n converges uniformly to f. (*Hint: For* ε > 0, consider the sets K_N = {x : f(x) - ∑_{n=1}^N f_n(x) ≥ ε}, and show that their intersection has to be empty. Then use some properties of compact sets.)

3) Let C[0,1] be the set of all real-valued continuous functions on [0,1]. Let $\psi \in C[0,1]$ and define

$$\rho_{\psi}(f,g) = \int_0^1 \psi(x) \, |f(x) - g(x)| \, dx.$$

a) Show that if $\psi(x) > 0$ for all $x \in [0, 1]$, then ρ_{ψ} is a metric in C[0, 1].

b) Show that if $\psi(x) = 0$ for $0 \le x \le 1/2$ and $\psi(x) = x - 1/2$ for $1/2 \le x \le 1$, then ρ_{ψ} is not a metric in C[0, 1].

4) Let X be a metric space with metric ρ , and let E be a closed subset of X. Show that the function $f: X \to [0,\infty)$ defined by

$$f(x) = \inf\{\rho(x, y) : y \in E\}$$

is continuous, and that f(x) = 0 if an only if $x \in E$.

5) Let $f: U \to V$ be a continuously differentiable function between two open sets in \mathbb{R}^n . Suppose that the Jacobian determinant of f is never zero on U, that $f^{-1}(K)$ is compact for any compact set $K \subset V$, and that V is connected. Show that f(U) = V.