## MATH 766 - Spring 2012

## PRACTICE PROBLEMS FOR THE FINAL EXAM

The exam will be based on the material in the book form Sections $8.1,8.2,10.1,10.2,10.3,10.4,10.5$, $10.6,11.1,11.211 .3,11.4,11.5$ and 11.6 that we covered in class. (Note that some of the results in 8.3 , $8.4,9.1,9.2,9.3$, and 9.4 are particular case of the results for metric spaces, so you may want to read them too). If in doubt please ask me.

- Of course, you need to know all the definitions of the concepts introduced and be able to state them.
- Study the proofs of the results presented in the lectures. Becoming acquainted with the proofs can help you prove similar related results.
- Prove and/or complete the properties and simple facts left as exercises in class.
- Review your homework and make sure you know how to do the all the problems assigned.
- Do the following practice problems.
- You should expect about 2-3 problems from the material we covered in the two midterms and about 3-4 problems from the material in Chapter 11.


## Problem 1.

Let $E$ be a nonempty closed set and $K$ be a nonempty compact set of $\mathbb{R}^{n}$. Show that there exist $c>0$ such that $d(e, k)>c$ for all $e \in E$ and all $k \in K$.

## Problem 2.

Let $X$ be a complete metric space with metric $\rho$.
a) Let $\left\{x_{n}\right\}_{n=0}^{\infty}$ be a sequence of point in $X$ with the property that $\rho\left(x_{n+1}, x_{n}\right) \leq c \rho\left(x_{n}, x_{n-1}\right)$ for some fixed $0<c<1$ and all $n$ in $\mathbb{N}$. Show that the sequence is convergent. (Hint: $\sum_{j=n}^{m} c^{j} \leq \epsilon$ in $n, m$ are large.)
b) Let $f: X \rightarrow X$ be a function with the property that $\rho(f(x), f(y)) \leq c \rho(x, y)$ for some fixed $0<c<1$ and all $x, y$ in $X$. Fix a point $x_{0}$ in $X$ and define $\left\{x_{n}\right\}_{n=0}^{\infty}$ where $x_{1}=f\left(x_{0}\right), x_{2}=f\left(x_{1}\right)$, ... (i.e. $x_{n+1}=f\left(x_{n}\right)$ ). Show that this sequence converges to some point $x$ in $X$.
c) Show that the limit of the sequence in $\mathbf{b}$ ) is a fixed point of $f$, i.e., it solves the equation $x=f(x)$. (Hint: $f$ is obviously continuous.)

## Problem 3.

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a continuous function whose derivative with respect to the first variable, $f_{x}$, exists and is continuous on $\mathbb{R}^{2}$.
a) Show that

$$
\lim _{h \rightarrow 0} \max _{a \leq y \leq b}\left(\frac{f(x+h, y)-f(x, y)}{h}-f_{x}(x, y)\right)=0
$$

b) Show that

$$
\frac{d}{d x} \int_{a}^{b} f(x, y) d y=\int_{a}^{b} f_{x}(x, y) d y
$$

Problem 4.
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=x^{3}\left(x^{2}+y^{2}\right)^{-1}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$.
a) Show that the partial derivatives $f_{x}$ and $f_{y}$ exist at $(0,0)$.
b) Show that $f$ is not differentiable at $(0,0)$. (Hint: Consider in the definition of differentiability an increment $h=(t, t)$.)

## Problem 5.

Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable functions such that $f(0)=g(0)=0$ and $f^{\prime}(0) \neq 0$. Show that there exist and open set V containing $(0,0)$ in $\mathbb{R}^{2}$ and a continuously differentiable function $h: V \rightarrow \mathbb{R}$ such that $h(z, w)=0$ if an only if $(z, w)=(f(x), g(x))$ for $x$ near 0 . (Hint: Consider $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, F(x, y)=(f(x), g(x)+y)$, use the Inverse Function Theorem, and discover the function $h$ needed.)

Problem 6. Show that there exist $\delta>0$ and a continuously differentiable function $f$ on the interval $(-\delta, \delta)$ such that $x f^{3}(x)+f(x)=1$ for all $x$ in $(-\delta, \delta)$. Compute $f^{\prime}(0)$.

Problem 7. The surfaces

$$
x^{2}+y^{2}+z^{2}=1
$$

and

$$
x y+z=1 / 2
$$

intersect in a curve $C$. Show that for each point $p_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ on $C$ there exist and open interval $I$ in $\mathbb{R}$ and a function $\Phi_{p_{0}}: I \rightarrow \mathbb{R}^{3}$ such that $p_{0} \in \Phi_{p_{0}}(I) \subset C$. Moreover, show that $\Phi_{p_{0}}$ is one-one.

