MATH 810 - REAL ANALYSIS

HW 1. Outer measure and Lebesgue measure in R

Due 09/16/15

- **1**. Let \mathcal{A} be an algebra of subsets of X.
- a) Show that \emptyset and X are in \mathcal{A} .

b) Show that if A and B are in \mathcal{A} , then $A \cap B$ is in \mathcal{A} .

c) Show that if \mathcal{A} is a σ -algebra and $\{A_n\}_{n=1}^{\infty}$ is a sequence of set in \mathcal{A} , then $\bigcap_{n=1}^{\infty} A_n$ is also in \mathcal{A} .

2. a) Show that the intersection of σ -algebras is a σ -algebra.

b) Show that given a family \mathcal{E} of subsets of X, there exists a unique smallest σ -algebra containing \mathcal{E} . (Note that $\mathcal{P}(X)$ is a σ -algebra containing \mathcal{E} .)

3. Let $A = [0, 1] \cap \mathbf{Q}$. Show that if $\{I_n\}$ is a finite collection of open intervals that covers A, then $\sum |I_n| \ge 1$. Is the same true for any infinite collection?

4. a) Show that if A is a set with $\mu^*(A) = 0$, then A is measurable.

b) Show that if $\mu^*(A) = 0$, then $\mu^*(A \cup B) = \mu^*(B)$ for any B.

c) Show that every non-empty open set of \mathbf{R} has positive measure.

d) Show that every compact set of R has finite measure.

5. a) Prove that μ* is translation invariant. That is μ*(A) = μ*(A + x) for any point x.
b) Prove that m is translation invariant.

6. Prove that if A_1 and A_2 are measurable sets, then

$$m(A_1 \cap A_2) + m(A_1 \cup A_2) = m(A_1) + m(A_2).$$

Extra credit:

7. Review the construction of the set N that we did the first class and the (mutually disjoint) sets N_r obtained from it for $r \in [0, 1) \cap \mathbf{Q}$.

a) Show that

$$\mu^*(\cup_r N_r) < \sum_r \mu^*(N_r)$$

(so, in particular, the sets N_r are not measurable).

b) Show that any measurable subset of N must have measure zero.