MATH 810 – REAL ANALYSIS

HW 2. Abstract measure spaces

Due 9/30/15

1. Let (X, \mathcal{M}, μ) be a measure space. Show that for any $E, F \in \mathcal{M}, \mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$.

2. Let (X, \mathcal{M}, μ) be a measure space and let $E \in \mathcal{M}$.

a) For $A \in \mathcal{M}$, define $\mu_E(A) = \mu(A \cap E)$. Show that μ_E is a measure on (X, \mathcal{M}) .

b) Define $\mathcal{M}_E = \{F \in \mathcal{M} : F \subset E\}$. Show that \mathcal{M}_E is a σ -algebra of subsets of E and that $(E, \mathcal{M}_E, \mu|_{\mathcal{M}_E})$ is a measure space. (Note that $\mu|_{\mathcal{M}_E} = \mu_E|_{\mathcal{M}_E}$.)

3. a) Let X be a set equipped with a σ -algebra \mathcal{M} . A function $\mu : \mathcal{M} \to [0, \infty]$ is called finitely additive if

i) $\mu(\emptyset) = 0$,

ii) and if $E_1, E_2, \dots E_n$ are disjoint sets in \mathcal{M} , then $\mu(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n \mu(E_i)$.

Let X be an infinite set and $\mathcal{M} = \mathcal{P}(X)$. Define $\mu(E) = 0$ if E is finite (or empty) and $\mu(E) = \infty$ if E is infinite. Show that μ is finitely additive but not a measure.

4. Let X be an uncountable set. Let

 $\mathcal{M} = \{ E \subset X : E = \emptyset, E = X, E \text{ is countable or } E^c \text{ is countable} \}.$

Define $\mu(E) = 0$ if E is empty or countable, and $\mu(E) = 1$ if E^c is countable. Show that (X, \mathcal{M}, μ) is a measure space.

5. Let $\mu_1, \mu_2, \dots, \mu_n$ be measures on (X, \mathcal{M}) . Show that for any $a_1, a_2, \dots, a_n \in [0, \infty)$, $\sum_{i=1}^n a_i \mu_i$ is a measure on (X, \mathcal{M}) .

6. Let (X, \mathcal{M}, μ) be a measure space. Let $\mathcal{N} = \{N \in \mathcal{M} : \mu(N) = 0\}$ and let $\overline{\mathcal{M}} = \{E \cup F : E \in \mathcal{M} \text{ and } F \subset N, N \in \mathcal{N}\}$. Show that $\overline{\mathcal{M}}$ is a σ -algebra. Show also that $\overline{\mu}$ defined on $\overline{\mathcal{M}}$ by $\overline{\mu}(E \cup F) = \mu(E)$ is the unique **complete** measure that extends μ to $\overline{\mathcal{M}}$.

Extra credit:

7. Let X be a non-empty set, $\mathcal{M} = \mathcal{P}(X)$, and $f : X \to [0, \infty]$ an arbitrary function. Define for $E \in \mathcal{M}, E \neq \emptyset$,

$$\mu(E) = \sum_{x \in E} f(x) \equiv \sup\{\sum_{x \in F} f(x) : F \subset E, F \text{ finite}\},\$$

and $\mu(\emptyset) = 0$.

a) Show that (X, \mathcal{M}, μ) is a measure space.

b) Show that μ is σ -finite if and only if $f(x) < \infty$ for every $x \in X$ and $\{x : f(x) > 0\}$ is countable. (Hint: To show that $\mu \sigma$ -finite implies $\{x : f(x) > 0\}$ countable, use $\{x : f(x) > 0\} = \bigcup_{n=1}^{\infty} \{x : f(x) > 1/n\}$.)