MATH 810 - REAL ANALYSIS

HW 3. Measurable functions

Due 10/14/15

NOTE: As explained in class, given measure spaces (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν), the book by Folland defines a function $f: X \rightarrow Y$ to be $(\mathcal{M}, \mathcal{N})$ measurable if $f^{-1}(A) \in \mathcal{M}$ for all $A \in \mathcal{N}$. In the particular case of $Y=\mathbf{R}^{*}$, we have defined measurability to mean that the subsets of X given by, say, $f_{<\alpha}$ are measurable for all $\alpha \in \mathbf{R}$. This is the definition you need to use for this $H W$. We will show in particular (see problem 2) that our notion of measurability is equivalent with being $(\mathcal{M}, \mathcal{B})$ measurable in Folland's sense, where \mathcal{B} is the Borel σ-algebra.

1. Let (X, \mathcal{M}, μ) be a measure space and let $f: X \rightarrow R^{*}$ be a measurable function. Show that the collection $A=\left\{E \subset R^{*}: f^{-1}(E)\right.$ is measurable $\}$ is a σ-algebra.
2. Let (X, \mathcal{M}, μ) be a measure space and let $f: X \rightarrow R^{*}$ be a measurable function. Show $f^{-1}(B)$ is a measurable set for every Borel set B.
3. Let $f: R \rightarrow R$ be a continuous function. Show that f is measurable.
4. Let (X, \mathcal{M}, μ) be a measure space, let $f: X \rightarrow R$ be a measurable function, and let $g: R \rightarrow R$ be a continuous function. Show that $g \circ f$ is measurable.
5. Recall the construction of the Cantor set C given in class and of the Cantor function $f:[0,1] \rightarrow$ $[0,1]$ which is non-decreasing, continuous and onto.
a) Define $g:[0,1] \rightarrow[0,1]$ by $g(x)=(f(x)+x) / 2$. Show that g is strictly increasing, continuous and onto. (Therefore it has a continuous inverse g^{-1}.)
b) Show that $g(C)$, where C is the Cantor set, is a measurable set of positive measure. (Hint: Estimate the the measure of $g([0,1]-C)$.)
c) You may assume that every set of positive measure has a non-measurable subset (actually, this follows from the exercises in Homework 1). Using this show that there exist a measurable set $M \subset[0,1]$ such that $g(M)$ is not measurable. (Hint: g^{-1} is continuous and C has measure zero.)
d) Show that there exist a measurable set M which is not a Borel set.
e) Show that the composition of measurable function on \mathbf{R} with Lebesgue measure (and with our definition of measurability) is not always measurable. (Hint: Consider $\chi_{M} \circ g^{-1}$, where M is the set in d).)
