MATH 810 - REAL ANALYSIS
 HW 6. More on R^{n} and products of measures

Due 11/30/15

1. a) Show that the function

$$
F(y)=\int_{R} \frac{1}{1+x^{2}} \frac{\sin (y-x)}{1+(y-x)^{2}} d m(x)
$$

is continuous.
b) Is

$$
f(x, y)=\frac{1}{1+x^{2}} \frac{\sin (y-x)}{1+(y-x)^{2}}
$$

Lebesgue integrable in R^{2} ? (Hint: remember that Lebesgue integration is translation invariant.)
2. Let $B^{n}=\left\{x \in R^{n}:|x| \leq 1\right\}$ be the unit ball in R^{n}. Show that $m\left(B^{n}\right)=\pi^{n / 2} / \Gamma(n / 2+$ 1), where m is the Lebesgue measure in R^{n}. (Recall that $\Gamma(x+1)=x \Gamma(x)$, and $\pi^{n / 2}=$ $\left.\int_{R^{n}} e^{-|x|^{2}} d m(x).\right)$
3. Show that for any $\epsilon>0$ the function $f(x)=\left(1+|x|^{n+\epsilon}\right)^{-1}$ is integrable in R^{n} with respect to the Lebesgue measure.
4. Show that for any $\epsilon>0$ the function $f(x)=|x|^{-n+\epsilon} \chi_{K}(x)$, where K is a compact set, is integrable in R^{n} with respect to the Lebesgue measure.
5. Show that

$$
\sum_{k=-\infty}^{\infty} \sum_{n=0}^{\infty} \frac{2^{-(1+\epsilon) n}}{\left(1+2^{-n}|k|\right)^{2}}<\infty
$$

for any $0<\epsilon<1$, but that

$$
\sum_{k=-\infty}^{\infty} \sum_{n=0}^{\infty} \frac{2^{-n}}{\left(1+2^{-n}|k|\right)^{2}}
$$

is divergent. Justify your computations.
Hint: Prove and use the inequalities

$$
c_{1} \leq \int_{1}^{\infty} \frac{2^{-n}}{\left(1+2^{-n} x\right)^{2}} d x \leq \sum_{k=-\infty}^{\infty} \frac{2^{-n}}{\left(1+2^{-n}|k|\right)^{2}} \leq 2^{-n}+2 \int_{0}^{\infty} \frac{2^{-n}}{\left(1+2^{-n} x\right)^{2}} d x \leq C_{2}
$$

where the constants c_{1} and C_{2} are independent of $n \geq 0$.

