MATH 810 - REAL ANALYSIS

Final Assingment

L^{p} spaces

Due by 10:00 a.m. on 12/15/15

(You may assume that all the measure spaces in the questions below are σ-finite)

1. Let (X, M, μ) be a measure space. Let $1<p_{i}<\infty, i=1, \cdots, n$ be real numbers satisfying

$$
\sum_{i=1}^{n} \frac{1}{p_{i}}=1
$$

Show that if f_{i} is in $L^{p_{i}}(X), i=1, \cdots, n$, then $\prod_{i} f_{i}$ is in $L^{1}(X)$ and

$$
\left\|\prod_{i=1}^{n} f_{i}\right\|_{L^{1}(X)} \leq \prod_{i=1}^{n}\left\|f_{i}\right\|_{L^{p_{i}}(X)} .
$$

Hint: Döes the case $\mathrm{n}=2$ look familiar? (ö is not a misprint). Then use induction.
2. Let $1<p, q<\infty, p \neq q$, and let $L^{p}(R)$ and $L^{q}(R)$ be defined with respect to the Lebesgue measure. Show that there exists a function f in $L^{p}(R)$ such that f is not in $L^{q}(R)$.
3. Let (X, \mathcal{M}, μ) be a σ-finite measure space. Write $X=\cup_{j=1}^{\infty} E_{j}$ where $0<\mu\left(E_{j}\right)<\infty$ and $E_{j} \subset E_{j+1}$ for all j. Let $f \in L^{p}(X)$ for some $1 \leq p<\infty$, and define $f_{j}=f \chi_{E_{j}}$. Show that $f_{j} \rightarrow f$ in L^{p}. Show also that, in general, the result is not true if $p=\infty$.
4. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be two measure spaces. For $1<p, q<\infty$, and $f: X \times Y \rightarrow \mathbf{C}$ $\mu \times \nu$ measurable, define

$$
\|f\|_{L^{p} L^{q}}=\left(\int_{Y}\left(\int_{X}|f(x, y)|^{q} d \mu(x)\right)^{p / q} d \nu(y)\right)^{1 / p}
$$

and consider the space of functions (equivalent classes of functions as always) $L^{p} L^{q}$ defined by the above norm (you can take for granted that it is a norm). Show that if $f \in L^{p} L^{q}$ and $g \in L^{r} L^{s}$ with $1=1 / p+1 / r$ and $1=1 / q+1 / s$, then

$$
\int_{X \times Y}|f(x, y) g(x, y)| d \mu \times d \nu<\infty .
$$

5. Let (X, M, μ) be a measure space with $\mu(X)<\infty$. Show that $\|f\|_{L^{\infty}(X)}=\lim _{p \rightarrow \infty}\|f\|_{L^{p}(X)}$. Hint: For $\epsilon>0$, small consider the set $A_{\epsilon}=\left\{x:|f(x)|>\|f\|_{L^{\infty}}-\epsilon\right\}$. Then A_{ϵ} has positive measure. Show that $\|f\|_{L^{p}} \geq\left(\|f\|_{L^{\infty}}-\epsilon\right)\left(\mu\left(A_{\epsilon}\right)\right)^{1 / p}$. Conclude that $\liminf _{p \rightarrow \infty}\|f\|_{L^{p}} \geq\|f\|_{L^{\infty}}$. A converse inequality $\lim \sup _{p \rightarrow \infty}\|f\|_{L^{p}} \leq\|f\|_{L^{\infty}}$ is easy.
