MATH 810 – REAL ANALYSIS

Final Assingment

L^p spaces

Due by 10:00 a.m. on 12/15/15

(You may assume that all the measure spaces in the questions below are σ -finite)

1. Let (X, M, μ) be a measure space. Let $1 < p_i < \infty$, $i = 1, \dots, n$ be real numbers satisfying

$$\sum_{i=1}^n \frac{1}{p_i} = 1.$$

Show that if f_i is in $L^{p_i}(X)$, $i = 1, \dots, n$, then $\prod_i f_i$ is in $L^1(X)$ and

$$\|\prod_{i=1}^n f_i\|_{L^1(X)} \le \prod_{i=1}^n \|f_i\|_{L^{p_i}(X)}.$$

Hint: Döes the case n = 2 look familiar? (ö is not a misprint). Then use induction.

2. Let $1 < p, q < \infty$, $p \neq q$, and let $L^p(R)$ and $L^q(R)$ be defined with respect to the Lebesgue measure. Show that there exists a function f in $L^p(R)$ such that f is not in $L^q(R)$.

3. Let (X, \mathcal{M}, μ) be a σ -finite measure space. Write $X = \bigcup_{j=1}^{\infty} E_j$ where $0 < \mu(E_j) < \infty$ and $E_j \subset E_{j+1}$ for all j. Let $f \in L^p(X)$ for some $1 \le p < \infty$, and define $f_j = f\chi_{E_j}$. Show that $f_j \to f$ in L^p . Show also that, in general, the result is not true if $p = \infty$.

4. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be two measure spaces. For $1 < p, q < \infty$, and $f : X \times Y \to \mathbb{C}$ $\mu \times \nu$ measurable, define

$$\|f\|_{L^p L^q} = \left(\int_Y \left(\int_X |f(x,y)|^q \, d\mu(x)\right)^{p/q} d\nu(y)\right)^{1/p}$$

and consider the space of functions (equivalent classes of functions as always) $L^p L^q$ defined by the above norm (you can take for granted that it is a norm). Show that if $f \in L^p L^q$ and $g \in L^r L^s$ with 1 = 1/p + 1/r and 1 = 1/q + 1/s, then

$$\int_{X \times Y} |f(x, y)g(x, y)| \, d\mu \times d\nu < \infty.$$

5. Let (X, M, μ) be a measure space with $\mu(X) < \infty$. Show that $\|f\|_{L^{\infty}(X)} = \lim_{p \to \infty} \|f\|_{L^{p}(X)}$. Hint: For $\epsilon > 0$, small consider the set $A_{\epsilon} = \{x : |f(x)| > \|f\|_{L^{\infty}} - \epsilon\}$. Then A_{ϵ} has positive measure. Show that $\|f\|_{L^{p}} \ge (\|f\|_{L^{\infty}} - \epsilon)(\mu(A_{\epsilon}))^{1/p}$. Conclude that $\lim \inf_{p \to \infty} \|f\|_{L^{p}} \ge \|f\|_{L^{\infty}}$. A converse inequality $\limsup_{p \to \infty} \|f\|_{L^{p}} \le \|f\|_{L^{\infty}}$ is easy.