MATH 890 - FOURIER ANALYSIS - F13

HW 1. More on spaces of smooth functions

1. a) Recall that in the topology of $\mathcal{D}\left(R^{n}\right)$, a sequence $\left\{\phi_{j}\right\}$ converges to zero if there exist a compact set K so that supp $\phi_{j} \subset K$ for all j and $\partial^{\alpha} \phi_{j}$ converges uniformly to zero for each multi-index α. Show that if f is in $C^{\infty}\left(R^{n}\right)$ then the linear map $\phi \rightarrow f \phi$ is continuous from \mathcal{D} to \mathcal{D}. (Hint: Remember that in \mathcal{D} it is enough to check the continuity on sequences.)
b) Consider the same problem in $\mathcal{S}\left(R^{n}\right)$, but with f in $C^{\infty}\left(R^{n}\right)$ and "tempered at infinity", that is $\left|\partial^{\alpha} f(x)\right| \leq C_{\alpha}(1+|x|)^{N_{\alpha}}$ for all multi-indices α. Show that the linear map $\phi \rightarrow f \phi$ is continuous from \mathcal{S} to \mathcal{S}.
2. This exercise will show that if we give the vector space \mathcal{D} the topology induced by the family of semi-norms

$$
\|\phi\|_{m}=\sup _{x \in R^{n},|\alpha| \leq m}\left|\partial^{\alpha} \phi(x)\right|,
$$

then it is not complete.
Proceed as follows. Fix $\phi \in \mathcal{D}(R)$ and define

$$
f_{N}(x)=\sum_{j=1}^{N} j^{-2} \phi(x-j) .
$$

Show that $\left\{f_{N}\right\}$ is a Cauchy sequence in $\left\|\|_{m}\right.$ for each m, but that $\left\{f_{N}\right\}$ does not converge to a function with compact support. (Hint: A picture may help you see what is going on.)
3. This exercise will show that \mathcal{D} with the topology mentioned in problem 1 is not metrizable.

Proceed as follows. Consider a sequence of compact sets E_{j} such that $R^{n}=\cup E_{j}$ and $E_{j} \subset \operatorname{int}\left(E_{j+1}\right)$. Consider also a sequence of functions $\left\{\phi_{j}\right\}$ in \mathcal{D} such that $\operatorname{supp} \phi_{j} \subset E_{j+1}$ and $\phi_{j} \equiv 1$ on E_{j}. Suppose now that \mathcal{D} admits a metric d compatible with the topology mentioned in problem 1. Let $\left\{B_{j}\right\}$ be the basis of nbhd's of zero in that metric given by $B_{j}=\left\{\phi \in \mathcal{D}: d(\phi, 0)<j^{-1}\right\}$. Then, there exists a sequence of positive constants $\left\{c_{j}\right\}$ such that $c_{j} \phi_{j} \in B_{j}$ (this is because multiplication by scalars is continuous in \mathcal{D}). Arrive now at a contradiction by looking at the sequence $\left\{c_{j} \phi_{j}\right\}$.
4. Let $f(x)=e^{x^{2}}$. For $\varphi \in \mathcal{D}(R)$, define $L_{f}(\varphi)=\int f \varphi d x$. Construct a sequence of function $\left\{\varphi_{j}\right\}$ in \mathcal{D} that tends to zero in \mathcal{S} but such that the sequence $\left\{L_{f}\left(\varphi_{j}\right)\right\}$ does not tend to zero. (Hint: Note that $L_{f}\left(\varphi_{j}\right)$ does tend to zero if $\left\{\varphi_{j}\right\}$ tends to zero in \mathcal{D}. So you need a sequence of functions $\left\{\varphi_{j}\right\}$ converging to zero in \mathcal{S} but not in \mathcal{D}.)
5. Given a collection of numbers $\left\{c_{\alpha}\right\}$ where α runs over all multi-indeces of length less than or equal to N, show that there exists a function $\varphi \in \mathcal{D}\left(R^{n}\right)$ such that $\partial^{\alpha} \varphi(0)=c_{\alpha}$ for all α with $|\alpha| \leq N$. (Hint: You may need to use the product rule.)

