MATH 890 – FOURIER ANALYSIS – F13

HW 1. More on spaces of smooth functions

1. a) Recall that in the topology of $\mathcal{D}(\mathbb{R}^n)$, a sequence $\{\phi_j\}$ converges to zero if there exist a compact set K so that supp $\phi_j \subset K$ for all j and $\partial^{\alpha} \phi_j$ converges uniformly to zero for each multi-index α . Show that if f is in $\mathbb{C}^{\infty}(\mathbb{R}^n)$ then the linear map $\phi \to f\phi$ is continuous from \mathcal{D} to \mathcal{D} . (Hint: Remember that in \mathcal{D} it is enough to check the continuity on sequences.)

b) Consider the same problem in $\mathcal{S}(\mathbb{R}^n)$, but with f in $C^{\infty}(\mathbb{R}^n)$ and "tempered at infinity", that is $|\partial^{\alpha} f(x)| \leq C_{\alpha}(1+|x|)^{N_{\alpha}}$ for all multi-indices α . Show that the linear map $\phi \to f\phi$ is continuous from \mathcal{S} to \mathcal{S} .

2. This exercise will show that if we give the vector space \mathcal{D} the topology induced by the family of semi-norms

$$\|\phi\|_m = \sup_{x \in R^n, |\alpha| \le m} |\partial^{\alpha} \phi(x)|,$$

then it is not complete.

Proceed as follows. Fix $\phi \in \mathcal{D}(R)$ and define

$$f_N(x) = \sum_{j=1}^N j^{-2} \phi(x-j).$$

Show that $\{f_N\}$ is a Cauchy sequence in $\|\|_m$ for each m, but that $\{f_N\}$ does not converge to a function with compact support. (Hint: A picture may help you see what is going on.)

3. This exercise will show that \mathcal{D} with the topology mentioned in problem 1 is not metrizable.

Proceed as follows. Consider a sequence of compact sets E_j such that $R^n = \bigcup E_j$ and $E_j \subset \operatorname{int}(E_{j+1})$. Consider also a sequence of functions $\{\phi_j\}$ in \mathcal{D} such that $\operatorname{supp} \phi_j \subset E_{j+1}$ and $\phi_j \equiv 1$ on E_j . Suppose now that \mathcal{D} admits a metric d compatible with the topology mentioned in problem 1. Let $\{B_j\}$ be the basis of nbhd's of zero in that metric given by $B_j = \{\phi \in \mathcal{D} : d(\phi, 0) < j^{-1}\}$. Then, there exists a sequence of positive constants $\{c_j\}$ such that $c_j\phi_j \in B_j$ (this is because multiplication by scalars is continuous in \mathcal{D}). Arrive now at a contradiction by looking at the sequence $\{c_i\phi_j\}$.

4. Let $f(x) = e^{x^2}$. For $\varphi \in \mathcal{D}(R)$, define $L_f(\varphi) = \int f \varphi \, dx$. Construct a sequence of function $\{\varphi_j\}$ in \mathcal{D} that tends to zero in \mathcal{S} but such that the sequence $\{L_f(\varphi_j)\}$ does not tend to zero. (Hint: Note that $L_f(\varphi_j)$ does tend to zero if $\{\varphi_j\}$ tends to zero in \mathcal{D} . So you need a sequence of functions $\{\varphi_j\}$ converging to zero in \mathcal{S} but not in \mathcal{D} .)

5. Given a collection of numbers $\{c_{\alpha}\}$ where α runs over all multi-indeces of length less than or equal to N, show that there exists a function $\varphi \in \mathcal{D}(\mathbb{R}^n)$ such that $\partial^{\alpha}\varphi(0) = c_{\alpha}$ for all α with $|\alpha| \leq N$. (Hint: You may need to use the product rule.)