MATH 890 - FOURIER ANALYSIS - F13 HW 2. More about distributions

1. a) Let $\left\{f_{j}\right\}$ be a sequence of functions in $L_{l o c}^{1}(\Omega)$ such that $f_{j} \rightarrow f$ a.e. in Ω. Assume that for every compact $K \subset \Omega$ there exists a function $g_{k} \in L^{1}(\Omega)$ such that $\left|f_{j}(x)\right| \leq g_{K}(x)$ a.e $x \in K$ for all j. Prove that $f_{j} \rightarrow f$ in $\mathcal{D}^{\prime}(\Omega)$.
b) Construct a sequence of $L_{l o c}^{1}$ functions in R converging to 0 a.e., but whose limit in $\mathcal{D}^{\prime}(R)$ is not 0 . (Hint: keep in mind part a).)
c) Construct a sequence of $L^{2}(R)$ function that converges to zero in $\mathcal{D}^{\prime}(R)$ but not in $L^{2}(R)$.
2. Let $\varphi \in \mathcal{D}(R), \varphi(x) \geq 0, \operatorname{supp} \varphi \subset[-1,1], \int \varphi d x=1$. Show that $\varphi_{\epsilon}(x)=1 / \epsilon \varphi(x / \epsilon)$ converges to δ in $\mathcal{D}^{\prime}(R)$ as ϵ goes to zero. (Hint: check that for each $\psi \in \mathcal{D}(R),\left\langle\delta-\varphi_{\epsilon}, \psi\right\rangle$ tends to zero.)
3. a) Prove that a function $\psi \in \mathcal{D}(R)$ is the derivative of another function in $\mathcal{D}(R)$ if and only if $\int \psi(x) d x=0$.
b) Prove that if $u \in \mathcal{D}^{\prime}(R)$ and $u^{\prime}=0$ then u is constant, in the sense that $\langle u, \psi\rangle=$ $c \int \psi d x$ for some constant c. (Hint: use part a). Note that if $\Phi \in \mathcal{D}$ and $\int \Phi d x=1$, then $\varphi(x)-\Phi(x) \int \varphi(t) d t$ has mean zero.).
4. Let f be a continuous function in $R-\left\{x_{0}\right\}$ whose derivative f^{\prime} in the classical sense is also a continuous function in $R-\left\{x_{0}\right\}$. Assume further that the lateral limits $f\left(x_{0} \pm\right)$ and $f^{\prime}\left(x_{0} \pm\right)$ exists and are finite. Since f is in particular locally integrable, $f \in \mathcal{D}^{\prime}(R)$. Let $D f$ be the distributional derivative of f in $\mathcal{D}^{\prime}(R)$. Show that $D f=f^{\prime}+\left(f\left(x_{0}+\right)-f\left(x_{0}-\right)\right) \delta_{x_{0}}$.
5. Let f be a $L_{l o c}^{1}\left(R^{n}\right)$. It is easy to check that the distribution $L_{f, \alpha} \in \mathcal{D}^{\prime}\left(R^{n}\right)$ defined by

$$
L_{f, \alpha}(\varphi)=\int f(x) \partial^{\alpha} \varphi(x) d x
$$

has order at most $N=|\alpha|$
a) Show, however, that if $f \in C^{N}$ then $L_{f, \alpha}$ has order zero.
b) Show that if $f(x)=|x|^{-1 / 2}$, then $L_{f, 1} \in \mathcal{D}^{\prime}(R)$ has order one. (Hint: consider -for example using appropriate "dilations" - a sequence of functions $\left\{\varphi_{j}\right\}$ such that $\left\{\left\|\varphi_{j}\right\|_{L^{\infty}}\right\}$ remains bounded but $\left\{\left|L_{f, 1}\left(\varphi_{j}\right)\right|\right\}$ tends to infinity.)
6. (Optional) The function $f(x)=|x|^{-1}$ is in $L_{l o c}^{1}\left(R^{3}\right)$ and so it can be viewed as a distribution in $\mathcal{D}^{\prime}\left(R^{3}\right)$. Show that $\Delta f=-4 \pi \delta$ in the sense of distributions, where $\Delta=$ $\sum_{j=1}^{3} \partial_{j}^{2}$. (Hint: show first that $\Delta f(x)=0$ in the classical sense for $x \neq 0$. Next, for $\varphi \in \mathcal{D}\left(R^{3}\right)$ write $\int f \varphi d x$ as $\lim _{\epsilon \rightarrow 0} \int_{\epsilon<|x|<A}$. Finally use Green's identity

$$
\int_{\Omega}(v \Delta u-u \Delta v) d x=\int_{\partial \Omega}\left(v \partial_{n} u-u \partial_{n} v\right) d s
$$

where u and v are smooth functions, Ω is a smooth domain with boundary $\partial \Omega, \partial_{n}$ is the normal derivative to the surface $\partial \Omega$, and $d s$ is surface measure.)
(HW continues in next page)
7. (Just for reading) See: De Pauw, Thierry and Pfeffer, Washek F, Distributions for which $\operatorname{div} v=F$ has a continuous solution, Comm. Pure Appl. Math. 61 (2008), no. 2, 230-260.

Let F be a distribution in R^{n} so that, in the sense of distributions, $F=\operatorname{div} v$ for some continuos vector field v. Show that for each $\epsilon>0$ there exists a constant C_{ϵ} such that

$$
|\langle F, \varphi\rangle| \leq C_{\epsilon}\|\varphi\|_{L^{1}}+\epsilon\|\nabla \varphi\|_{L^{1}}
$$

for all $\varphi \in \mathcal{D}\left(R^{n}\right)$ with $\operatorname{supp} \varphi \subset B(0,1 / \epsilon)$.
Remark: In the above mentioned article it is showed that this necessary condition is also sufficient to have a continuous solution v of the equation $F=\operatorname{div} v$. But that is much harder to prove.

