MATH 890 – FOURIER ANALYSIS – F13 HW 3. More about the Fourier Transform

- 1. Compute the Fourier transform of the following functions
 - a) $f(x) = e^{-|x|}, x \in R$. b) $f(x) = e^{-ax^2}, x \in R$. c) $f(x) = e^{-ax}H(x), x \in R$, where $H(x) = \chi_{(1,\infty)}(x)$ (the Heaviside function). d) $f(x) = \chi_{[-A,A]}(x), x \in R, A > 0$. e) $f(x) = \chi_{[-A,A]^n}(x), x \in R^n, A > 0$. f) f(x) continuous on R, constant on [b, c], linear on [a, b] and [c, d] and zero outside [a, d]for $-\infty < a < b < c < d < +\infty$.
- 2. Use Parseval's identity to compute

a)
$$\int_{R} \left(\frac{\sin x}{x}\right)^{m} dx$$
 for $m = 2, 3, 4$.
b) $\int_{R} \frac{1}{(1+x^{2})^{2}} dx$

3. Assume that $f \in C(R)$ satisfies the size estimates

$$|f(x)| \le C(1+|x|)^{-2}$$

and

$$|\widehat{f}(\xi)| \le C(1+|\xi|)^{-2}$$

Prove the Poisson summation formula:

$$\sum_{k \in \mathbb{Z}} \widehat{f}(\xi - 2k\pi) = \sum_{k \in \mathbb{Z}} f(k)e^{-ik\xi}$$

where both series converge uniformly on $(-\pi, \pi)$. In particular,

$$\sum_{k \in Z} \widehat{f}(2k\pi) = \sum_{k \in Z} f(k).$$

(Hint: use the size estimates to show that both series converge uniformly to continuous 2π -periodic functions. Then compute the Fourier coefficients of the left hand side.)

4. Compute the Fourier transform of $p.v. \frac{1}{x}$. (Hint: write $f_N(x) = \frac{1}{x} \chi_{\{1/n < |x| < N\}}(x)$, compute $< \widehat{f_N}, \varphi >$ for φ in \mathcal{S} . and pass to a limit. You may need to use $\int_0^\infty \frac{\sin x}{x} dx = \pi/2$ as an improper Riemann integral.)

5. a) Show that f in $\mathcal{S}'(\mathbf{R}^n)$ is a polynomial if and only if $\operatorname{supp} \widehat{f} = \{0\}$.

b) Let $\mathcal{S}_0(\mathbb{R}^n)$ be the subspace of $\mathcal{S}(\mathbb{R}^n)$ consisting of functions whose Fourier transform vanishes at zero to infinity order (i.e. $\partial^{\alpha} \widehat{f}(0) = 0$ for all α). Show that if f, g are in \mathcal{S}' , then f = g when restricted to \mathcal{S}_0 if and only if f = g + P where P is a polynomial. (Remark: Using a result from functional analysis called the Hahn-Banach Theorem, one can show that if we endow \mathcal{S}_0 with the topology of \mathcal{S} , then the dual of \mathcal{S}_0 can be identified with \mathcal{S}'/\mathcal{P} .)