MATH 890 - FOURIER ANALYSIS - F13
 HW 3. More about the Fourier Transform

1. Compute the Fourier transform of the following functions
a) $f(x)=e^{-|x|}, x \in R$.
b) $f(x)=e^{-a x^{2}}, x \in R$.
c) $f(x)=e^{-a x} H(x), x \in R$, where $H(x)=\chi_{(1, \infty)}(x)$ (the Heaviside function).
d) $f(x)=\chi_{[-A, A]}(x), x \in R, A>0$.
e) $f(x)=\chi_{[-A, A]^{n}}(x), x \in R^{n}, A>0$.
f) $f(x)$ continuous on R, constant on $[b, c]$, linear on $[a, b]$ and $[c, d]$ and zero outside $[a, d]$ for $-\infty<a<b<c<d<+\infty$.
2. Use Parseval's identity to compute
a) $\int_{R}\left(\frac{\sin x}{x}\right)^{m} d x$ for $m=2,3,4$.
b) $\int_{R} \frac{1}{\left(1+x^{2}\right)^{2}} d x$
3. Assume that $f \in C(R)$ satisfies the size estimates

$$
|f(x)| \leq C(1+|x|)^{-2}
$$

and

$$
|\widehat{f}(\xi)| \leq C(1+|\xi|)^{-2}
$$

Prove the Poisson summation formula:

$$
\sum_{k \in Z} \widehat{f}(\xi-2 k \pi)=\sum_{k \in Z} f(k) e^{-i k \xi},
$$

where both series converge uniformly on $(-\pi, \pi)$. In particular,

$$
\sum_{k \in Z} \widehat{f}(2 k \pi)=\sum_{k \in Z} f(k) .
$$

(Hint: use the size estimates to show that both series converge uniformly to continuous 2π-periodic functions. Then compute the Fourier coefficients of the left hand side.)
4. Compute the Fourier transform of p.v. $\frac{1}{x}$. (Hint: write $f_{N}(x)=\frac{1}{x} \chi_{\{1 / n<|x|<N\}}(x)$, compute $<\widehat{f_{N}}, \varphi>$ for φ in \mathcal{S}. and pass to a limit. You may need to use $\int_{0}^{\infty} \frac{\sin x}{x} d x=\pi / 2$ as an improper Riemann integral.)
5. a) Show that f in $\mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$ is a polynomial if and only if supp $\widehat{f}=\{0\}$.
b) Let $\mathcal{S}_{0}\left(R^{n}\right)$ be the subspace of $\mathcal{S}\left(R^{n}\right)$ consisting of functions whose Fourier transform vanishes at zero to infinity order (i.e. $\partial^{\alpha} \widehat{f}(0)=0$ for all α). Show that if f, g are in \mathcal{S}^{\prime}, then $f=g$ when restricted to \mathcal{S}_{0} if and only if $f=g+P$ where P is a polynomial. (Remark: Using a result from functional analysis called the Hahn-Banach Theorem, one can show that if we endow \mathcal{S}_{0} with the topology of \mathcal{S}, then the dual of \mathcal{S}_{0} can be identified with $\mathcal{S}^{\prime} / \mathcal{P}$.)

